Answer:
The molar solubility of CdCO3 is 2.5 *10^-5 M
Explanation:
Step 1: Data given
Molarity of NH3 = 0.055 M
Ksp(CdCO3) = 5.2 * 10^−12
Kf([Cd(NH3)4]2+) = 1.3 * 10^7
Step 2: The balanced equation
CdCO3 + 4NH3 → Cd(NH3)4 + CO3^2-
Step 3: Define the concentrations
Kf = [Cd(NH3)4]^+2)/ [CdCO3] [NH3]^4
K = Ksp * Kf
K = 5.2 * 10^-12 * 1.3*10^7 = 0.0000676
The initial concentration of NH3 =0.055 M
The initial concentration of Cd(NH3)4^2+ = 0 M
The initial concentration of CO3^2- is 0M
For 4 moles NH3 consumed, we produce 1 mole Cd(NH3)4^2+ and 1 mole CO3^2-
This means there will be consumed 4X of NH3
There will be produced X of Cd(NH3)4^2+ and X of CO3^2-
The molarity of NH3 at the equilibrium will be: (0.055 - 4X)M
The molarity of Cd(NH3)4^2+ and CO3^2- at the equilibrium will be X M
K = 0.0000676 = [Cd(NH3)4^2+][CO3^2-] / [NH3]^4
K = 0.0000676 = X² /(0.055 - 4x)^4
X² = 0.0000676* ((0.055 - 4x)^4
X = 2.48 * 10^-5 M
The molar solubility of CdCO3 is 2.5 *10^-5 M