The answer is a strike-slip. More specifically a right-lateral strike-slip.
The following is the introduction to a special e-publication called Determining the Age of the Earth (click the link to see a table of contents). Published earlier this year, the collection draws articles from the archives of Scientific American. In the collection, this introduction appears with the title, “Stumbling Toward an Understanding of Geologic Timescales.”
True, biodiversity creates different species animals depend on each other for food and other reasons so the answer is true.
Given:
A compound with:
Number of carbon atoms = 9
Number of double bonds = 1
A double bond between 5th and 6th carbon
A propyl group (CH2CH2CH3) branching off the 3rd carbon from the left
Try to illustrate the given and observe the formation of the atoms. Now, follow the correct IUPAC naming system. The name of the compound is
4-propyl-1-hexene
Count from the right to the left, the double bond is between the 1st and 2nd carbon, thus, 1-hexene. The propyl branches out the 4th carbon from the right, thus 4-propyl.
Answer:
a) 7.0.
b) Nickel sulfate hepta hydrate.
c) 280.83 g/mol.
d) 44.9%.
Explanation:
<u><em>a) What is the formula of the hydrate?</em></u>
The mass of the hydrated sample (NiSO₄.xH₂O) = 5.0 g,
The mass of the anhydrous salt (NiSO₄) = 2.755 g,
The mass of water = 5.0 g - 2.755 g = 2.245 g.
∴ no. of moles of water = mass/molar mass = (2.245 g)/(18.0 g/mol) = 0.1247 mol.
∴ no. of moles of anhydrous salt (NiSO₄) = mass/molar mass = (2.755 g)/(154.75 g/mol) = 0.0178 mol.
∴ water of crystallization in the sample (x) = no. of moles of water/no. of moles of anhydrous salt (NiSO₄) = (0.1247 mol)/(0.0178 mol) = 7.0.
<u><em>b) What is the full chemical name for the hydrate?</em></u>
The name of the salt (NiSO₄.7H₂O) is Nickel sulfate hepta hydrate.
<u><em>c) What is the molar mass of the hydrate? </em></u>
(NiSO₄.7H₂O)
The molar mass = molar mass of NiSO₄ + 7(molar mass of H₂O) = (154.75 g/mol) + 7(18.0 g/mol) = 280.83 g/mol.
<em><u>d) What is the mass % of water in the hydrate?</u></em>
The mass % of water = (mass of water)/(mass of hydrated sample) x 100 = (2.245 g)/(5.0 g) x 100 = 44.9%.