Answer:
ΔH = 57.04 Kj/mole H₂O
Explanation:
60ml(0.300M Ba(OH)₂(aq) + 60ml(0.600M HCl(aq)
=> 0.06(0.3)mole Ba(OH)₂(aq) + 0.60(0.6)mole HCl(aq)
=> 0.018mole Ba(OH)₂(aq) + 0.036mole HCl(aq)
=> 100% conversion of reactants => 0.018mole BaCl₂(aq) + 0.036mole H₂O(l) + Heat
ΔH = mcΔT/moles H₂O <==> Heat Transfer / mole H₂O
=(120g)(4.0184j/g°C)(27.74°C - 23.65°C)/(0.036mole H₂O)
ΔH = 57,042 j/mole H₂O = 57.04 Kj/mole H₂O
Answer:
Explanation:
It probably would have been broken down to smaller pieces and spread out around the world. Hope this help! :)
Look at the periodic table the element next at the right of Cl is the Ar and the atomic mass is 39.948 is bigger than the Cl 35.45. All the elements after that has mases bigger than Cl.
Catenation is the property by which it can make bonds with other carbon<span> atoms to form long chains. Hence, </span>carbon<span>, with the least diffuse valence shell p orbital is capable of forming longer p-p sigma bonded chains of atoms than heavier elements which bond via higher valence shell orbitals.</span>
<u>Answer:</u> The correct answer is 
<u>Explanation:</u>
We are given:

The substance having highest positive
potential will always get reduced and will undergo reduction reaction. Here, silver will always undergo reduction reaction will get reduced.
Chromium will undergo oxidation reaction and will get oxidized.
The half reactions for the above cell is:
Oxidation half reaction: 
Reduction half reaction:
( × 3)
Net equation: 
Oxidation reaction occurs at anode and reduction reaction occurs at cathode.
To calculate the
of the reaction, we use the equation:

Putting values in above equation, we get:

Hence, the correct answer is 