Usually, you have to take two years of physical sciences with lab. It doesn't have to be physics, it can be chemistry or biology.
The magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.
The given parameters;
- <em>initial temperature of metals, = </em>
<em /> - <em>initial temperature of water, = </em>
<em> </em> - <em>specific heat capacity of copper, </em>
<em> = 0.385 J/g.K</em> - <em>specific heat capacity of aluminum, </em>
= 0.9 J/g.K - <em>both metals have equal mass = m</em>
The quantity of heat transferred by each metal is calculated as follows;
Q = mcΔt
<em>For</em><em> copper metal</em><em>, the quantity of heat transferred is calculated as</em>;

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>copper metal</em>;

<em>For </em><em>aluminum metal</em><em>, the quantity of heat transferred is calculated as</em>;

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>aluminum metal </em><em>;</em>

Thus, we can conclude that the magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.
Learn more here:brainly.com/question/15345295
Answer:
7.8x10^10
Explanation:
divide that value by 10000000000
and you get 7.8
Answer:
- Here we use the conservation of momentum theorem.
- m stands for mass, and v stands for velocity. The numbers refer to the respective objects.
- m1v1 + m2v2 = m1vf1 + m2vf2
- Since the equation is perfectly inelastic, the final velocity of both masses is the same. Let’s account for this in our formula.
- m1v1 + m2v2 = vf(m1 + m2)
<u>Let’s substitute in our givens.</u>
(0.002 kg)(700 m/s) + (5 kg)(0 m/s) = vf(0.002 kg + 5 kg)
I assume you are proficient in algebra I, so I will not include the steps to simplify this equation.
Note that I have considered the bullet’s velocity to be in the positive direction,
The answer is vf = 0.280 m/s
If the force equals, for instance, 100 Newtons then 0.866 × 100 = 86.6 Newtons. This is the magnitude of the resultant force vector on the object.