Answer:443.1 s
Explanation:
Given
Engine of a locomotive exerts a force of 
Mass of train
Final speed (v)
F=ma
so 

and acceleration is



The period of the pendulum is 8.2 s
Explanation:
The period of a simple pendulum is given by the equation:

where
L is the length of the pendulum
g is the acceleration of gravity
T is the period
We notice that the period of a pendulum does not depend at all on its mass, but only on its length.
For the pendulum in this problem, we have
L = 16.8 m
and
(acceleration of gravity)
Therefore the period of this pendulum is

#LearnWithBrainly
Answer : The final pressure of the system in atm is, 3.64 atm
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

or,

where,
= first pressure = 8.19 atm
= second pressure = 2.65 atm
= first volume = 2.14 L
= second volume = 9.84 L
= final pressure = ?
= final volume = 2.14 L + 9.84 L = 11.98 L
Now put all the given values in the above equation, we get:


Therefore, the final pressure of the system in atm is, 3.64 atm
Answer:
The magnitude of the force required to bring the mass to rest is 15 N.
Explanation:
Given;
mass, m = 3 .00 kg
initial speed of the mass, u = 25 m/s
distance traveled by the mass, d = 62.5 m
The acceleration of the mass is given as;
v² = u² + 2ad
at the maximum distance of 62.5 m, the final velocity of the mass = 0
0 = u² + 2ad
-2ad = u²
-a = u²/2d
-a = (25)² / (2 x 62.5)
-a = 5
a = -5 m/s²
the magnitude of the acceleration = 5 m/s²
Apply Newton's second law of motion;
F = ma
F = 3 x 5
F = 15 N
Therefore, the magnitude of the force required to bring the mass to rest is 15 N.
All of the above as it states that "<span>a particle attracts every other particle in the universe using a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers"</span>