Steam powered boats run from an engine, using power, gears, and cranks to function.
Sailboats use no engine and rely on winds to move and change the direction of the boat.
Answer:
Increase in wavelength of incident wave also increases the spread angle or spread of the interference pattern.
Explanation:
Solution:-
- The diffraction occurs when light bends in the same medium. The bending is the result of light waves "squeezing" through small openings or "curving" around sharp edges.
- Moreover, waves diffract best when the size of the diffraction opening (or grting or groove) corresponds to the size of the wavelength. Hence, light diffracts more through small openings than through larger openings.
- The formula for diffraction shows a direct relationship between the angle of diffraction (theta) and wavelength:
d sin (θ) = m λ
Where,
λ : Wavelength , θ : The spread angle , d : Slit opening or grating
- We can see that the wavelength λ and spread angle θ are related proportionally. So if we increase the wavelength of incident wave we also increase the spread angle or spread of the interference pattern.
The decibel system of sound intensity operates by a logarithmic scale, meaning that sound intensity increases exponentially in relation to the decibel rating.
For decibels, the equation between intensity and the dB equivalent is:
dB = 10log(i),
where “i” is the intensity of the sound. The ten in front of the log means that an increase in ten dB results in a tenfold increase in sound intensity; for example, a 30 dB sound is ten times softer than a 40 dB sound.
In this case, a sound with a dB of 80 would be 1000 times more intense than a 50 dB sound, so the decibel rating of B is 80.
Hope this helps!
Answer:
Second Trial satisfy principle of conservation of momentum
Explanation:
Given mass of ball A and ball B 
Let mass of ball
and
Final velocity of ball 
Final velocity of ball 
initial velocity of ball 
Initial velocity of ball 
Momentum after collision 
Momentum before collision 
Conservation of momentum in a closed system states that, moment before collision should be equal to moment after collision.
Now, 
Plugging each trial in this equation we get,
First Trial

momentum before collision
moment after collision
Second Trial

moment before collision
moment after collision
Third Trial

momentum before collision
moment after collision
Fourth Trial

momentum before collision
moment after collision
We can see only Trial- 2 shows the conservation of momentum in a closed system.