Answer: option c. the mixing of solute and solvent molecules
Explanation:
Moles= mass divided by molar mass
Molar mass= 12.01(4) + 1.01(10)
= 58.14g/mol
Moles=14.5g / 58.14g/mol
=0.249
Therefore there are approx 0.249 moles in a 14.5g sample of C4H10
Answer:
Glycogen. Cellulose. Amylose. Cellulose. Amylopetin and Glycogen. Amylopetin and Cellulose.
Explanation:
Glycogen is the form that glucose is stored in human body.
Cellulose is the structural part of plant cell walls and human cannot digest it.
Amylose is the polysaccharide linked mainly by the the bonds of
1,4 glycosidic.
Cellulose is an unbranched polysaccharide linked mainly by the bonds of
1,4 glycosidic.
Amylopetin and Glycogen are branched polysaccharides linked by the bonds of
1,4 glycosidic and
1,6 glycosidic.
Amylopetin and Cellulose are mainly stored in plants.
Answer:
A) An ionic compound dissolved in a polar solvent
Explanation:
Potassium Chloride's chemical formula is KCl. Most ionic compounds are formed between a nonmetal and a metal. In this case, potassium is acting as the metal and chloride is the nonmetal. Water is a polar solvent due to the electronegativity of the oxygen in the molecule creating a partial negative pole, leaving the hydrogen atoms partially positive. Hence, A is your best answer.
If I helped, a brainliest would be greatly appreciated!
Answer:
6
Explanation:
FCC is face centered cubic lattice. In FCC structure, there are eight atoms at the eight corner of the cubic unit cell and one atom centered in each of the faces. FCC unit cells consist of four atoms, (8/8) at the corners and (6/2) in the faces.
Given that, Cu has FCC structure and it contains a vacancy at origin (0, 0, 0). And there is no other vacancy directly adjacent to the vacancy at the origin. So, all the adjacent positions contain Cu atoms. Hence, the total number of adjacent atoms of the vacancy at origin can jump into this vacancy.
the above FCC unit cell clearly indicates that there are six adjacent atoms adjacent to the vacancy at origin
So, the total number of adjacent atoms of the vacancy at origin can jump into this vacancy is 6.