C5H12 (l) + 8O2 (g) ----> 5CO2 (g) + 6H2O (l)
Delta H = -3505.8 kJ/mol
C (s) + O2 (g) -----> CO2 (g)
Delta H = -393.5 kJ/mol
H2 (g) + (1/2)O2 (g) ------> H2O (l)
Delta H = -286 kJ/mol
Possible answers:
a. +35 kJ/mol
b. + 1,073 kJ/mol
c. -4,185 kJ/mol
d. -2,826 kJ/mol
e. -178 kJ/mol
I'm not completely sure but if I did know I would definitely tell u
A Thermochemical Equation is a balanced stoichiometric chemical equation that includes the enthalpy change, ΔH. In variable form, a thermochemical equation would look like this:
A + B → CΔH = (±) #
Where {A, B, C} are the usual agents of a chemical equation with coefficients and “(±) #” is a positive or negative numerical value, usually with units of kJ.
please mark as brainliest
Answer:
A. (CH3)3C-I reacts by SN1 mechanism whose rate is independent of nucleophile reactivity.
Explanation:
We must recall that (CH3)3C-I is a tertiary alkyl halide. Tertiary alkyl halides preferentially undergo substitution reaction via SN1 mechanism.
In SN1 mechanism, the rate of reaction depends solely on the concentration of the alkyl halide (unimolecular mechanism) and is independent of the concentration of the nucleophile. As a result of this, both Br^- and Cl^- react at the same rate.