Answer:
<em><u>The three-dimensional region of space that indicates where there is a high probability of finding an electron.</u></em>
Answer:
Initial volume of the container (V1) = 1.27 L (Approx)
Explanation:
Given:
Number of mol (n1) = 5.67 x 10⁻²
Number of mol (n2) = (5.67 +2.95) x 10⁻² = 8.62 x 10⁻²
New volume (V2) = 1.93 L
Find:
Initial volume of the container (V1)
Computation:
Using Avogadro's law
V1 / n1 = V2 / n2
V1 / 5.67 x 10⁻² = 1.93 / 8.62 x 10⁻²
V1 = 10.9431 / 8.62
Initial volume of the container (V1) = 1.2695
Initial volume of the container (V1) = 1.27 L (Approx)
Answer:
Multiply 1.25 by 0.04 and divide the result obtained by 1,000
Explanation:
Given: [1 gram = 0.04 ounce, 1 liter = 1,000 milliliter]
1.25 x 0.04 = 0.05 oz
Therefore, 0.05 per 1,000 milliliter
0.05 ÷ 1,000 = 0.00005 oz
Therefore, the density of the gas is 0.00005 oz/mL
Hope this helps! :)
The answer would be heterogeneous
Write more interesting lab reports,draw better diagnosis for reports,look at old problems in new ways and also do more interesting observation to include data