Answer: a) Partial pressure of argon is 0.673 atm.
b) Partial pressure of ethane is 0.427 atm.
Explanation:
According to the ideal gas equation:'
P = Pressure of the argon gas = ?
V= Volume of the gas = 1.00 L
T= Temperature of the gas = 25°C = 298 K (0°C = 273 K)
R= Gas constant = 0.0821 atmL/K mol
n= moles of gas = 
Thus the partial pressure of argon is 0.673 atm.
b) According to Dalton's law, the total pressure is the sum of individual pressures.





Thus partial pressure of ethane is 0.427 atm.
Answer:
N=+2
O=-2
Explanation:
The compound NO is electrically neutral.
Lets assign the oxidation number of nitrogen to be N. The oxidation number of oxygen (-2) is then used as a reference.
For the compound to have a zero charge, sum of the oxidation numbers equals zero.
N+ (-2)=0
N=+2
O=-2
Answer:
First, we can test Solution 1. We know that Sodium Hydroxide is a strong base. If we test acids on blue litmus paper, they will turn red. If we test bases on red litmus paper, they will turn blue. So, you can test all the of the solutions- water, sodium hydroxide and hydrochloric acid with blue and red litmus paper. HCl, Hydrochloric acid is an acid, so it will turn blue litmus paper red. It will not turn red litmus blue. The acids will turn blue litmus paper red. The bases will turn red litmus paper blue. Only water is a neutral liquid, which will not turn blue litmus paper red or red litmus paper blue. It will not change the colour of it. Thus, if you test all the solutions with blue and red litmus paper, you will know which solution is water. Water is the only one which is neutral. It is the only solution which cannot change the colour of any litmus paper. Thus, you can identify it very easily.
Given:
K = 0.71 = Kp
The reaction of sulphur with oxygen is
S(s) + O2(g) ---> SO2(g)
initial Pressure 6.90 0
Change -x +x
Equilibrium 6.90-x x
Kp = pSO2 / pO2 = 0.71 = x / (6.90-x)
4.899 - 0.71x = x
4.899 = 1.71x
x = 2.86 atm = pressure of SO2 formed
temperature = 950 C = 950 + 273.15 K = 1223.15 K
Volume = 50 L
Let us calculate moles of SO2 formed using ideal gas equation as
PV = nRT
R = gas constant = 0.0821 L atm / mol K
putting other values
n = PV / RT = 2.86 X 50 / 1223.15 X 0.0821 = 1.42 moles
Moles of Sulphur required = 1.42 moles
Mass of sulphur required or consumed = moles X atomic mass of sulphur
mass of S = 1.42 X 32 = 45.57 grams or 0.04557 Kg of sulphur