F = G mM / r^2, where
<span>F = gravitational force between the earth and the moon, </span>
<span>G = Universal gravitational constant = 6.67 x 10^(-11) Nm^2/(kg)^2, </span>
<span>m = mass of the moon = 7.36 × 10^(22) kg </span>
<span>M = mass of the earth = 5.9742 × 10^(24) and </span>
<span>r = distance between the earth and the moon = 384,402 km </span>
<span>F </span>
<span>= 6.67 x 10^(-11) * (7.36 × 10^(22) * 5.9742 × 10^(24) / (384,402 )^2 </span>
<span>= 1.985 x 10^(26) N</span>
As the box is moving with a constant velocity, the two forces acting on the box are canceling each other.
Then friction force = 80 Newtons but in the opposite direction.
Friction force = Mu * Normal force exerted by ground = Mu * weight of box
So we find Mu.
Mu = coefficient of friction between box and horizontal surface
= Force of friction / weight = 80 / 50 * 9.81 = 0.163
When an identical box is placed on top, the force of friction is
= Mu * total weight = 0.163 * (50+50) * 9.81 = 159.9 Newtons
Explanation:
The object is moving along the parabola y = x² and is at the point (√2, 2). Because the object is changing directions, it has a centripetal acceleration towards the center of the circle of curvature.
First, we need to find the radius of curvature. This is given by the equation:
R = [1 + (y')²]^(³/₂) / |y"|
y' = 2x and y" = 2:
R = [1 + (2x)²]^(³/₂) / |2|
R = (1 + 4x²)^(³/₂) / 2
At x = √2:
R = (1 + 4(√2)²)^(³/₂) / 2
R = (9)^(³/₂) / 2
R = 27 / 2
R = 13.5
So the centripetal force is:
F = m v² / r
F = m (5)² / 13.5
F = 1.85 m
Answer:
Speed of gamma rays = 3 x 10⁸ m/s
Explanation:
Given:
Frequency of gamma ray = 3 x 10¹⁹ Hz
Wavelength of gamma rays = 1 x 10⁻¹¹ meter
Find:
Speed of gamma rays
Computation:
Velocity = Frequency x wavelength
Speed of gamma rays = Frequency of gamma ray x Wavelength of gamma rays
Speed of gamma rays = [3 x 10¹⁹][1 x 10⁻¹¹]
Speed of gamma rays = 3 x [10¹⁹⁻¹¹]
Speed of gamma rays = 3 x [10⁸]
Speed of gamma rays = 3 x 10⁸ m/s