Answer:
Explanation:
Given
radius of ferris wheel is 20 m
It completes 6 turns in 1 min
i.e. 1 turn in 10 sec
Therefore its angular velocity is 
(a)Period of motion is 10 s
Magnitude of centripetal acceleration is 

(b)Highest point will be 40 m
(c) lowest point 0 m i.e. at ground
Answer:
at t=46/22, x=24 699/1210 ≈ 24.56m
Explanation:
The general equation for location is:
x(t) = x₀ + v₀·t + 1/2 a·t²
Where:
x(t) is the location at time t. Let's say this is the height above the base of the cliff.
x₀ is the starting position. At the base of the cliff we'll take x₀=0 and at the top x₀=46.0
v₀ is the initial velocity. For the ball it is 0, for the stone it is 22.0.
a is the standard gravity. In this example it is pointed downwards at -9.8 m/s².
Now that we have this formula, we have to write it two times, once for the ball and once for the stone, and then figure out for which t they are equal, which is the point of collision.
Ball: x(t) = 46.0 + 0 - 1/2*9.8 t²
Stone: x(t) = 0 + 22·t - 1/2*9.8 t²
Since both objects are subject to the same gravity, the 1/2 a·t² term cancels out on both side, and what we're left with is actually quite a simple equation:
46 = 22·t
so t = 46/22 ≈ 2.09
Put this t back into either original (i.e., with the quadratic term) equation and get:
x(46/22) = 46 - 1/2 * 9.806 * (46/22)² ≈ 24.56 m
angular vel to tangential vel
v=r omega
v = 56 x 100/60 x 2 pi
v = 56x5/3x6
v=560m/s as estimate
100 revs, 5.00m
<span>
E = mc^2 = 8.152*10^-30 *(3.00 *10^8)^2 = 7.336 *10^-13 J. </span>