Answer:
Point R is at 14.28 miles.
Explanation:
According to the attached image:
Q = 90 - 37.6 = 52.4°
Using the tangent property:
tanθ = s/11
s = 11 * tanθ = 11 * tan52.4 = 14.28 miles
Time taken by proton to complete one complete circular orbit= 7.28 x 10⁻⁸ s
Explanation:
For proton, the centripetal force required for circular motion is provided by the magnetic force,
so Fm= Fc
q v B = m v²/r
m= mass of charged particle
v= velocity
B =magnetic field
q= charge
r= radius of circular path
v= q B r/m
now v= r ω
ω= angular velocity
ω r = q B r /m
ω=q B /m
now ω= 2π/T where T =time period
so 2π/T=q B/m
T= 2 πm/q B
T= 2π (1.67 x 10⁻²⁷)/ [( 1.6 x 10⁻¹⁹)* (0.9)]
T= 7.28 x 10⁻⁸ s
Answer: acceleration = slope graph velocity vs time
Explanation: if you have the graph of velocity vs time , the slope of that graph equals the acceleration of our object assuming constant acceleration...but remenber por a real object is really hard to keep constant acceleration
With each<span> passing </span>day<span>, the </span>high tides occur<span> about an </span>hour later<span>. The moon rises about an </span>hour later each day<span>, too (actually, 54 minutes </span>later<span>). Since the moon pulls up the </span>tides<span>, these two delays are connected. As the earth rotates through </span>one day<span>, the moon moves in its orbit.</span>