To develop this problem we will use the concepts related to Speed in a string that is governed by Tension (T) and linear density (µ)
Our values are given as:
Replacing we have that the velocity is
From the theory of wave propagation the average power wave is given as
Where,
A = Amplitude
Angular velocity
Replacing,
Therefore the amplitude of the wave should be 0.0165m
Answer:
1,3
Explanation:
As the acceleration is -10m/s^2 , that means deceleration is occurring. That means, the object is slowing down.
v=u-at
or, 0=80-10t
or, t=8 seconds
So, the object will stop in 8 seconds.
So, the correct answers are 1 and 3.
Hope, this helps you.
Answer:
a).
Wmin= 2471.03 J
W=1603.01 J
Explanation:
Weight, w= 2267 N
Minimum work 'h' is the distance the refrigerator is raised h=1.09m
The motion is no frictional force so, the magnitude of the force with a angle of 45.0° is find using:
Answer:
4.98 m
Explanation:
Given that
Width of the mirror, d = 0.6 m
Organist distance to the mirror, s = 0.78 m
Distance between the singer and the organist, S = 5.7 + 0.78 = 6.48 m
Width of north wall, D?
Using the simple relationship
D/S = d/s, on rearranging
D = dS /s
D = (0.6 * 6.48) / 0.78
D = 3.888 / 0.78
D = 4.98 m
Therefore, we can conclude that the Width of north wall is 4.98 m
Answer:
<em>The amount of electric charge transported = 0.192 C</em>
Explanation:
Electric Charge: This is defined as the product of electric current and time in an electric circuit, The S.I unit of electric charge is Coulombs (C)
Q = It..................... Equation 1
Where Q = Electric charge, I = electric current, t = time.
<em>Given:</em> I = 285 mA, t = 674 milliseconds.
<em>Conversion: (i) Convert from 285 mA to A = (285/1000) A = 0.285 A</em>
<em> (ii) convert from 674 milliseconds to seconds = (674/1000) s = 0.674 s </em>
Substituting these values into equation 1
Q = 0.285 × 0.674
<em>Q = 0.192 C</em>
<em>Therefore the amount of electric charge transported = 0.192 C</em>
<em></em>
<em></em>