The jogger's average speed 1.03 m/s
<h3>
The Speed and the Velocity of a Particle in a Circle</h3>
The speed of a particle is a circle will always be constant while the velocity will not. That is, velocity varies.
Given that a jogger jogs around a circular track with a diameter of 275 m in 14.0 minutes. First convert the minutes to seconds
Given parameters are;
- Time t = 14 minutes = 14 x 60s = 840 s
Speed V = 2πr ÷ t
V = ( 2 × π × 137.5 ) ÷ 840
V = 863.9 / 840
V = 1.028 m/s
Therefore, the jogger's average speed 1.03 m/s approximately
Learn more about Circular Motion here: brainly.com/question/20905151
#SPJ1
Answer:
The value is 
Explanation:
From the question we are told that
The temperature is 
Generally the root mean square speed of the oxygen molecules is mathematically represented as

Here R is the gas constant with a value 
M is the molar mass of oxygen molecule with value 
So

=> 
Answer:
C. The voltage drop across the resistor is 2.1V and nothing about the current through the resistor.
Explanation:
When connected in parallel, voltage across the resistances are the same. So if 2.1V was dropped across the LED then 2.1V was also dropped across the resistor. However, this tells us nothing about the current through the resistor. We can find the current across the resistor if we know the resistance of the resistor, but that's about it.
If it were a series connection, then the current would have been the same, but the voltage drop were another story.
Answer:
In an ideal pulley system is assumed as a perfect system, and the efficiency of the pulley system is taken as 100% such that there are no losses of the energy input to the system through the system's component
However, in a real pulley system, there are several means through which energy is lost from the system through friction, which is converted into heat, sound, as well as other forms of energy
Given that the mechanical advantage = Force output/(Force input), and that the input force is known, the energy loss comes from the output force which is then reduced, and therefore, the Actual Mechanical Advantage (AMA) is less than the Ideal Mechanical Advantage of an "ideal" pulley system
The relationship between the actual and ideal mechanical advantage is given by the efficiency of the pulley system as follows;

Explanation:
Answer:
physical
Explanation:
how thick something is is a physical trait, so it's a physical property!