Rearrange the equation F = ma to solve for acceleration<span>. You can change this formula around to solve for </span>acceleration<span> by dividing both sides by the mass, so: a = F/m. To find the </span>acceleration<span>, simply divide the force by the mass of the </span>object <span>being accelerated.
Hope i helped :)</span>
The energy is 3.06 electronvolts, E = 3.06eV
1eV = 1.6 * 10^-19 J
3.06 eV = 3.06* 1.6 * 10^-19 J = 4.896 * 10^-19 J
It is 29 and a half days long
By
vector addition.
In fact, velocity is a vector, with a magnitude intensity, a direction and a verse, so we can't simply do an algebraic sum of the two (or more velocities).
First we need to decompose each velocity on both x- and y-axis (if we are on a 2D-plane), then we should do the algebraic sum of all the components on the x- axis and of all the components on the y-axis, to find the resultants on x- and y-axis. And finally, the magnitude of the resultant will be given by

where Rx and Rx are the resultants on x- and y-axis. The direction of the resultant will be given by

where

is its direction with respect to the x-axis.
Correct choices are marked in bold:
travel in straight lines and can bounce off surfaces --> TRUE, normally electromagnetic waves travel in straight lines, however they can be reflected by objects, bouncing off their surfaces
travel through space at the speed of light --> TRUE, all electromagnetic waves in space (vacuum) travel at the speed of light,
)
travel only through matter --> FALSE; electromagnetic waves can also travel through vacuum
travel only through space --> FALSE, electromagnetic waves can also travel through matter
can bend around objects --> TRUE, this is what happens for instance when diffraction occurs: electromagnetic waves are bended around obstacles or small slits
move by particles bumping into each other --> FALSE, electromagnetic waves are oscillations of electric and magnetic fields, so no particles are involved
move by the interaction between an electric field and a magnetic field --> TRUE, electromagnetic waves consist of an electric field and a magnetic field oscillating in a direction perpendicular to the direction of motion of the wave