1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crank
3 years ago
10

An object with a height of 1.0 cm is placed 1.4 cm from a convex lens that has a

Physics
1 answer:
Gennadij [26K]3 years ago
5 0

Answer:

A concave mirror has a focal length of. 10.0 cm. What is its radius of curvature? ... 20.0 cm. 62. An object located 18 cm from a convex mirror produces a virtual image 9 ... cm. 75 cm. 66. Find the image position and height for the object shown in ... 1 block 1.0 cm. Vertical scale: 2 blocks 1.0 cm. F. I1 hi. 1.0 cm di. 2.7 cm. O1.

Explanation:

Hope This Helps

You might be interested in
Write equations for both the electric and magnetic fields for an electromagnetic wave in the red part of the visible spectrum th
Strike441 [17]

Answer:

E=3.5(8.98*10^{6}x-2.69*10^{15}t)

B=1.17*10^{-8}(8.98*10^{6}x-2.69*10^{15}t)

Explanation:

The electric field equation of a electromagnetic wave is given by:

E=E_{max}(kx-\omega t) (1)

  • E(max) is the maximun value of E, it means the amplitude of the wave.
  • k is the wave number
  • ω is the angular frequency

We know that the wave length is λ = 700 nm and the peak electric field magnitude of 3.5 V/m, this value is correspond a E(max).

By definition:

k=\frac{2\pi}{\lambda}            

k=8.98*10^{6} [rad/m]      

And the relation between λ and f is:                

c=\lambda f

f=\frac{c}{\lambda}

f=\frac{3*10^{8}}{700*10^{-9}}

f=4.28*10^{14}

The angular frequency equation is:

\omega=2\pi f

\omega=2\pi*4.28*10^{14}

\omega=2.69*10^{15} [rad/s]

Therefore, the E equation, suing (1), will be:

E=3.5(8.98*10^{6}x-2.69*10^{15}t) (2)

For the magnetic field we have the next equation:

B=B_{max}(kx-\omega t) (3)

It is the same as E. Here we just need to find B(max).

We can use this equation:

E_{max}=cB_{max}

B_{max}=\frac{E_{max}}{c}=\frac{3.5}{3*10^{8}}

B_{max}=1.17*10^{-8}T

Putting this in (3), finally we will have:

B=1.17*10^{-8}(8.98*10^{6}x-2.69*10^{15}t) (4)

I hope it helps you!

8 0
3 years ago
We drive at a speed of 20 km/h for 3 hours. Then we drive 4 hours at 30 km/h. Calculate our average speed.
Afina-wow [57]

First speed = 20km/h

Time = 3 hours

Distance = 3×20

<h3> = <u>60 km</u></h3>

Second speed = 30km/h

Time = 4 hours

Distance = 4×30

<h3> = <u>120 km</u></h3>

Total distance = 60+120 = <u>180km</u>

Total time = 3+4 =<u> 7 hours</u>

Average speed = 180/7

<h3> = <u>25.71</u><u> </u><u>km</u><u>/</u><u>h</u></h3>

Hope this will help...

4 0
3 years ago
Read 2 more answers
A 350-g mass is attached to a spring whose spring constant is 64 N/m. Its maximum acceleration is 5.3 m/s2. What is the frequenc
max2010maxim [7]

The frequency of oscillation is 2.153 Hz

What is the frequency of spring?

Spring Frequency is the natural frequency of spring with a weight at the lower end. Spring is fixed from the upper end and the lower end is free.

For the mass-spring system in this problem,

The Frequency of spring is calculated with the equation:

f = \frac{1}{2\pi } \sqrt{\frac{k}{m} }

Where,

f = frequency of spring

k = spring constant = 64 N/m

m = mass attached to spring = 350g = 0.350 kg

a = maximum acceleration = 5.3 m/s^2

Substituting the values in the equation,

f = \frac{1}{2\pi } \sqrt{\frac{64}{0.350} }

f = \frac{1}{2\pi } ( 13.522)

f = 2.1535 Hz

Hence,

The frequency of oscillation is 2.153 Hz

Learn more about frequency here:

<u>brainly.com/question/13978015</u>

#SPJ4

6 0
1 year ago
What is a loose icy body with a long narrow orbit?
Bumek [7]
A comet is the loose, icy body with a long, narrow orbit. 
Comets are very small solar system body made mainly of ices mixed with smaller amounts of dust and rock. Most comets are not larger than a few kilometers across. The main body of the comet is called the nucleus, and it can contain water, methane, nitrogen and other ices. Their speeds vary depending on their orbits and where they are in it. The closer they are to the sun, the faster they are going.
4 0
3 years ago
The electrons of an atom store nuclear energy.
Sladkaya [172]
False. The nuclear energy is found within the nucleus. Electrons are located outside the nucleus.
4 0
3 years ago
Read 2 more answers
Other questions:
  • Why does water stay in a straw if you put your finger over it?
    15·1 answer
  • Which type of light energy found in solar radiation is most likely to reach earth's surface?
    6·2 answers
  • A 144-g baseball moving 26 m/s strikes a stationary 5.25-kg brick resting on small rollers so it moves without significant frict
    5·1 answer
  • the force of friction between a 1000 kg car and the road is 10000 N, what is the fastest acceleration the car can achieve?​
    5·2 answers
  • Why does the moon appear to wax grow larger and then wane or get smaller
    11·1 answer
  • Please help me
    9·1 answer
  • If a speeding train hits the brakes and it takes the train 39 seconds to go from 54.8 m/s to 12 m/s what is the acceleration?
    14·2 answers
  • A cuboid has sides that are 0.2m, 0.4m and 0.7m. The mass of the cuboid is 0.5kg. Calculate the density.
    6·1 answer
  • I have a problem in this questions?
    8·1 answer
  • Correct displacement 4km south,2 km north, 5km south, and 5 km north
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!