I am pretty sure that floodplains are most often found for rivers that exist on <span>
hilly areas at the base of mountains. In order to give yoy ans example which will make sure that this answer is quite a suitable one, nice example of f</span><span>loodplains</span>
is The Virgin River<span> at the upper end of Zion Canyon. It will definitely help you! Regards.</span><span>
</span>
Answer:
False
Explanation:
Because when you go through east
( +x axis ) then you go to west ( -x axis )
You will subtract -9 from +15
it's become +6
( I talk about the displacement not distance) ( West = - East )
I hope that it's a clear ") .
The answer is C 300,000 kilometers per second
Answer:
The answer is B.
Explanation:
Given that the <em>current </em>(Ampere) in a series circuit is same so we can ignore it. We can assume that the total voltage is 60V and all the 3 resistance are different, 20Ω, 40Ω and 60Ω. So first, we have to find the total resistance by adding :
Total resistance = 20Ω + 40Ω + 60Ω
= 120Ω
Next, we have to find out that 1Ω is equal to how many voltage by dividing :
120Ω = 60V
1Ω = 60V ÷ 120
1Ω = 0.5V
Lastly, we have to calculate the voltage at R1 so we have to multiply by 20 (R1) :
1Ω = 0.5V
20Ω = 0.5V × 20
20Ω = 10V
Answer:
the work is done by the gas on the environment -is W= - 3534.94 J (since the initial pressure is lower than the atmospheric pressure , it needs external work to expand)
Explanation:
assuming ideal gas behaviour of the gas , the equation for ideal gas is
P*V=n*R*T
where
P = absolute pressure
V= volume
T= absolute temperature
n= number of moles of gas
R= ideal gas constant = 8.314 J/mol K
P=n*R*T/V
the work that is done by the gas is calculated through
W=∫pdV= ∫ (n*R*T/V) dV
for an isothermal process T=constant and since the piston is closed vessel also n=constant during the process then denoting 1 and 2 for initial and final state respectively:
W=∫pdV= ∫ (n*R*T/V) dV = n*R*T ∫(1/V) dV = n*R*T * ln (V₂/V₁)
since
P₁=n*R*T/V₁
P₂=n*R*T/V₂
dividing both equations
V₂/V₁ = P₁/P₂
W= n*R*T * ln (V₂/V₁) = n*R*T * ln (P₁/P₂ )
replacing values
P₁=n*R*T/V₁ = 2 moles* 8.314 J/mol K* 300K / 0.1 m3= 49884 Pa
since P₂ = 1 atm = 101325 Pa
W= n*R*T * ln (P₁/P₂ ) = 2 mol * 8.314 J/mol K * 300K * (49884 Pa/101325 Pa) = -3534.94 J