Answer:
![\dfrac{(x-1)^2}{4}+\dfrac{y^2}{25}=1](https://tex.z-dn.net/?f=%5Cdfrac%7B%28x-1%29%5E2%7D%7B4%7D%2B%5Cdfrac%7By%5E2%7D%7B25%7D%3D1)
Step-by-step explanation:
The equation of the ellipse is
![\dfrac{(x-x_0)^2}{a^2}+\dfrac{(y-y_0)^2}{b^2}=1,](https://tex.z-dn.net/?f=%5Cdfrac%7B%28x-x_0%29%5E2%7D%7Ba%5E2%7D%2B%5Cdfrac%7B%28y-y_0%29%5E2%7D%7Bb%5E2%7D%3D1%2C)
where
are the coordinates of the center.
If the vertices of an ellipse are at A(1, 5) and B(1, -5), then the center is the midpoint of the segment AB. Hence, the center has coordinates
![\left(\dfrac{1+1}{2},\dfrac{5+(-5)}{2}\right)=(1,0).](https://tex.z-dn.net/?f=%5Cleft%28%5Cdfrac%7B1%2B1%7D%7B2%7D%2C%5Cdfrac%7B5%2B%28-5%29%7D%7B2%7D%5Cright%29%3D%281%2C0%29.)
The coordinates of the vertices satisfy the equation:
![\dfrac{(1-1)^2}{a^2}+\dfrac{(5-0)^2}{b^2}=1\Rightarrow b^2=25.](https://tex.z-dn.net/?f=%5Cdfrac%7B%281-1%29%5E2%7D%7Ba%5E2%7D%2B%5Cdfrac%7B%285-0%29%5E2%7D%7Bb%5E2%7D%3D1%5CRightarrow%20b%5E2%3D25.)
If (3, 0) is a point on the ellipse, then its coordinates satisfy the equation:
![\dfrac{(3-1)^2}{a^2}+\dfrac{(0-0)^2}{b^2}=1\Rightarrow a^2=4.](https://tex.z-dn.net/?f=%5Cdfrac%7B%283-1%29%5E2%7D%7Ba%5E2%7D%2B%5Cdfrac%7B%280-0%29%5E2%7D%7Bb%5E2%7D%3D1%5CRightarrow%20a%5E2%3D4.)
Therefore, the equation of the ellipse is
![\dfrac{(x-1)^2}{4}+\dfrac{y^2}{25}=1.](https://tex.z-dn.net/?f=%5Cdfrac%7B%28x-1%29%5E2%7D%7B4%7D%2B%5Cdfrac%7By%5E2%7D%7B25%7D%3D1.)