<span>Kinematics is used in this problem. The mass does not matter here because the question is mass independent.
vi = 0
vf = x
d = ?
d = vi + 1/2 a t^2
d = 0 + 1/2 (9.8) (1.8)^2
d = 15.9 m (counting sig figs)</span>
Answer:

Explanation:
Given:
Capacitance, C = 85 pF = 85 × 10⁻¹² F
Resistance, R = 75 MΩ = 75×10⁶Ω
Charge in capacitor at any time 't' is given as:

where,
Q₀ = Maximum charge = CE
E = Initial voltage
t = time
also, Q = CV
V= Final voltage = 90% of E = 0.9E
thus, we have

or

or

taking log both sides, we get

or

or

or

Answer:
55.80s
Explanation:
Power is calculated using the expression
Power = Work done/Time
Workdone= Force ×distance
Workdone = 794×22
Work done = 17468Joules
From the power formula
Time = Workdone/Power
Time = 17468/313
Time = 55.80seconds
The elevator takes 55.80seconds to life the Taylor