Answer:
The same as the escape velocity of asteorid A (50m/s)
Explanation:
The escape velocity is described as follows:

where
is the universal gravitational constant,
is the mass of the asteroid and
is the radius
and since the scape velocity is 50m/s:

Now, if the astroid B has twice mass and twice the radius, we have that tha mass is: 
and the radius is: 
inserting these values into the formula for escape velocity:

and we have found that
, so the two asteroids have the same escape velocity.
We found that the expression for escape velocity remains the same as for asteroid A, this because both quantities (radius and mass) doubled, so it does not affect the equation.
The answer is
Asteroid B would have an escape velocity the same as the escape velocity of asteroid A
Answer:
A. 16.67 m/s
Explanation:
Speed or velocity refers to the rate of change in distance over a change in time. That is;
Speed = Distance ÷ time
Where;
Speed is in metre/seconds
Distance is in metre
Time is in seconds.
In this question, Steve throws a football 50 meters in 3 seconds. The average speed can be calculated this:
S = D/t
Where; d = 50m, t = 3s
S = 50/3
S = 16.6666666
S = 16.67m/s
Answer:
Explanation:
Given
mass of object 
kinetic Energy 
Tension in string 
mass is moving in a horizontal circle so tension is providing the centripetal acceleration
therefore 
where r=radius of circle
kinetic energy of particle 
divide 1 and 2 we get




<span>D. sugar changes from white to a light amber color
We're looking for a chemical change. So let's examine the options and see what happening with them.
A. adding cream and milk to the mixture
She's just making a mixture here. No unexpected reactions or changes happen as she adds the cream and milk. So this is the wrong answer.
B. mixing the sugar with water
Dissolving the sugar in water. Once again, nothing unusual happens and if she were to evaporate the water, she'd be left with the original sugar. So this is the wrong answer.
C. melting the sugar
Just starting a simple phase change. Once again, no the right answer.
D. sugar changes from white to a light amber color
She's melted the sugar and has a clear fluid. As she continued to heat this fluid, it suddenly turns light amber. She has made a permanent change to the substance that she can't undo by simply physical means. She has converted part of the sugar into caramel. So a chemical change has happened here.</span>
Answer:
Explanation:
1. What are the forces acting on the block when it is hanging freely from the spring scale? What is the net force on the block? What are the magnitudes of each of the forces acting on the block? Explain.
When a block is hanging freely, two forces are acting on it = tension force from the spring scale and gravity force on the block itself. The net force is zero as the block is not accelerating. The magnitudes of tension and gravity force are the same but in opposite directions.
2. What are the forces that act on the block when it is placed on the ramp and is held in place by the spring scale? What is the net force acting on the block? Explain. (Assume that the ramps are frictionless surfaces.)
There are three forces acting on the block when it is placed on the ramp and is held in place by the spring scale: as in 1, there are tension and gravity but there is a third force - reaction force from the ramp surface on the block that is perpendicular to the surface. Again the block is not moving so the net force is zero.
3. What is the magnitude of normal force acting on the block when it is resting on the flat surface? How does the normal force change as the angle of the ramp increases? Explain. (Assume that the ramps are frictionless surfaces.)
On flat surface, the normal force is equal to the gravity force of the block i.e. its weight. On a vertical surface, the normal force is equal to zero. For the angle of ramp, θ, the normal force = weight * cos θ.