Henry will lift 200 N load 20 m up a ladder in 40 s. While the Ricardo will take 400 N load in 80 seconds. So, For Henry to take 400 N load it will take him 80 seconds in two attempts. And,also, he will have to cover 40 m of distance.
Answer:
v(t)= (d/dt)x(t)
Explanation:
The instantaneous velocity of an object is the limit of the average velocity as the elapsed time approaches zero, or the derivative of x with respect to t. Like average velocity, instantaneous velocity is a vector with dimension of length per time. The instantaneous velocity at a specific time point t
0 is the rate of change of the position function, which is the slope of the position function
x
(
t
)
at t
0
.
<u>Answer:</u>
<h3>During wet and freezing temperatures, ice is able to form at a faster pace on bridges because freezing winds blow from above and below and both sides of the bridge, causing heat to quickly escape. The road freezes slower because it is merely losing heat through its surface.</h3>
<u>Sources:</u>
-- https://intblog.onspot.com/en-us/why-do-bridges-become-icy-before-roads
and
-- https://www.accuweather.com/en/accuweather-ready/why-bridges-freeze-before-roads/687262
I hope this helps you! ^^
<span>One thousand grams of seawater has 35 grams of dissolved substances ... on the average. While the salinity of the Earth's oceans and seas varies, the average salinity of seawater rests at 3.5%. Consider one liter or sea or ocean water. One liter has 1,000 milliliters (mL) in it. To find 3.5% of 1,000, we would multiply with the decimal place adjusted for percentages: 1000 x .035 = 35. Therefore, for every 1,000 mL of seawater, we will find 35 grams of (mostly) sodium chloride, otherwise known as salt.</span>