1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stich3 [128]
3 years ago
8

Why do small bells have a high pitch

Physics
1 answer:
erma4kov [3.2K]3 years ago
8 0
Small objects vibrate quickly and produce lots of waves each second, and as the length of the bells are short the wave length become short too,so small bells have a high frequency hence high pitch.
You might be interested in
A soccer ball is released from rest at the top of a grassy incline. After 8.6 seconds, the ball travels 87 meters and 1.0 s afte
Arturiano [62]

Answer:

a) a = 2.35 m/s^2

Explanation:

(a) In order to calculate the magnitude of the acceleration of the ball, you use the following formula, for the position of the ball:

x=v_ot+\frac{1}{2}at^2     (1)

x: position of the ball after t seconds = 87 m

t: time  = 8.6 s

a: acceleration of the ball = ?

vo: initial velocity of the ball = 0 m/s

You solve the equation (1) for a:

x=0+\frac{1}{2}at^2\\\\a=\frac{2x}{t^2}

You replace the values of the parameters in the previous equation:

a=\frac{2(87m)}{(8.6s)^2}=2.35\frac{m}{s^2}

The acceleration of the ball is 2.35 m/s^2

6 0
3 years ago
2 characteristics of constant speed
svetoff [14.1K]

Answer:

it has no acceleration

Explanation:

8 0
3 years ago
Two loudspeakers are placed 1.8 m apart. They play tones of equal frequency. If you stand 3.0 m in front of the speakers, and ex
Ahat [919]

The question is incomplete. The complete question is :

Two loudspeakers are placed 1.8 m apart. They play tones of equal frequency. If you stand 3.0 m in front of the speakers, and exactly between them, you hear a minimum of intensity. As you walk parallel to the plane of the speakers, staying 3.0 m away, the sound intensity increases until reaching a maximum when you are directly in front of one of the speakers. The speed of sound in the room is 340 m/s.

What is the frequency of the sound?

Solution :

Given :

The distance between the two loud speakers, d = 1.8 \ m

The speaker are in phase and so the path difference is zero constructive interference occurs.

At the point D, the speakers are out of phase and so the path difference is $=\frac{\lambda}{2}$

Therefore,

$AD-BD = \frac{\lambda}{2}

$\sqrt{(1.8)^2+(3)^2-3} =\frac{\lambda}{2}$

$\lambda = 2 \times 0.4985$

$\lambda = 0.99714 \ m$

Thus the frequency is :

$f=\frac{v}{\lambda}$

$f=\frac{340}{0.99714}$

f=340.9744 Hz

3 0
2 years ago
A 32.5 g cube of aluminum initially at 45.8 °C is submerged into 105.3 g of water at 15.4 °C. What is the final temperature of b
lakkis [162]

Answer:

T = 17.26 ^oC

Explanation:

At thermal equilibrium we have heat given by aluminium must be equal to the heat absorbed by the water

so we will have

Q_1 = Q_2

m_1s_1\Delta T_1 = m_2s_2\Delta T_2

so we will have

32.5(900)(45.8 - T) = 105.3(4186)(T - 15.4)

so we have

(45.8 - T) = 15.1(T - 15.4)

so we have

16.1 T = 277.87

T = 17.26 ^oC

6 0
3 years ago
A research team developed a robot named Ellie. Ellie ran 1,000 meters for 200 seconds from the research building, rested for 100
Verizon [17]

Answer:

1. Running velocity (5 m/s)

2. Resting velocity (0 m/s)

3. Walking velocity (-1 m/s)

1. Running speed (5 m/s)

2. Walking speed (1 m/s)

3. Resting speed (0 m/s)

Explanation:

Attached you will find the plot of position vs time of Ellie´s movement.

The velocity is the displacement of the object over time relative to the system of reference. The speed, in change, is the traveled distance over time in disregard of the system of reference.

So, the velocity is calculated as follows:

v = Δx / Δt

where

Δx = final position - initial position

Δt = elapsed time

1) The average velocity of Ellie while running is:

v = 1000 m - 0 m / 200 s = 5 m/s

While resting:

v = 0 m - 0 m / 100 s = 0 m/s

And while walking back:

v = 0 m - 1000 m / 1000 s = - 1 m/s

Note that in this last case, the initial position is 1000 m because Ellie is 1000 m from the origin of the system of reference when she walks back. The final position will be the origin of the system of reference, 0 m.

Comparing with the graphic, the velocity is the slope of the function position(t).

Then:

1. Running velocity (5 m/s)

2. Resting velocity (0 m/s)

3. Walking velocity (-1 m/s)

2) The speed is the distance traveled over time:

Running speed = 1000 m / 200 s = 5m /s

Resting speed = 0 m / 100 s = 0 m/s

Walking speed = 1000 m/ 1000 s = 1 m/s

Then:

1. Running speed (5 m/s)

2. Walking speed (1 m/s)

3. Resting speed (0 m/s)  

4 0
3 years ago
Other questions:
  • An object traveling at 343 m/s, is also traveling at the _____
    10·1 answer
  • Two equal mass carts approach each other with velocities equal in magnitude but opposite in direction. Friction can be neglected
    7·1 answer
  • 4. Susan observed that different kinds and amounts of fossils were present in a cliff behind her house. She wondered why changes
    5·2 answers
  • Scientists believe that there are three genes that contribute to skin color in humans. Which of these best describes the inherit
    5·2 answers
  • Si te dijera que la energía es una cualidad o capacidad que tienen los cuerpos materiales ¿para qué sirve o emplean los cuerpos
    5·1 answer
  • An electric heater is rated at 1500 W, a toaster at 750 W, and an electric grill at 1000 W. The three appliances are connected t
    11·1 answer
  • 20 POINTS!! What does this picture look like ???
    8·1 answer
  • Which components of the atom has a positive charge
    10·2 answers
  • The the symptoms and treatments for these common nervous system
    13·1 answer
  • Iron is a solid phase of iron still unknown to science. The only difference between it and ordinary iron is that Iron forms a cr
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!