three charged particals are located at the corners of an equil triangle shown in the figure showing let (q 2.20 Uc) and L 0.650
Weight of the child m = 50 kg
Radius of the merry -go-around r = 1.50 m
Angular speed w = 3.00 rad/s
(a)Child's centripetal acceleration will be a = w^2 x r = 3^2 x 1.50 => a = 9 x
1.5
Centripetal Acceleration a = 13.5m/sec^2
(b)The minimum force between her feet and the floor in circular path
Circular Path length C = 2 x 3.14 x 1.50 => c = 3 x 3.14 => C = 9.424
Time taken t = 2 x 3.14 / w => t = 6.28 / 3 => t = 2.09
Calculating velocity v = distance / time = 9.424 / 2.09 m/s => v = 4.5 m/s
Calculating force, from equation F x r = mv^2 => F = mv^2 / r => 50 x (4.5)^2
/ 1.5
F = 50 x 3 x 4.5 => F = 150 x 4.5 => F = 675 N
(c)Minimum coefficient of static friction u
F = u x m x g => u = F / m x g => u = 675/ 50 x 9.81 => 1.376
u = 1.376
Hence with the force and the friction coefficient she is likely to stay on merry-go-around.
5.55 mol H2O
Explanation:
Water has a molar mass of 18.01528 g/mol. We can then calculate the number of moles of water as
100 g H20 × (1 mol H2O/18.01528 g H20)
= 5.55 mol H2O
Answer:
1.22gcm³
Explanation:
D = mass/ volume
Mass=1.840kg = 1,840g
1000g = 1kg
1.840kg= x(g)
X(g) = 1.840/1000
= 1840g
Volume = 0.0015m³= 1,500cm³
1m³= 1000,000cm³.
0.0015m³= x(cm³)
X(cm³) = 1000,000×0.0015
X(cm³)= 1500.
Since density is mass/volume, now impute your data's
D=m/v
D=1840/1500
1.22g/cm³
Sometimes scientists make a mistake or Miscalculate and need to do the experiment again.