Answer:
V O2 = 1.623 L
Explanation:
- 1 mol ≡ 6.022 E23 molecules
∴ molecules O2 = 4.00 E22 molecules
⇒ moles O2 = (4.00 E22 molecules O2)×(mol O2/6.022 E23 molecules)
⇒ moles O2 = 0.0664 moles
at STP:
∴ T = 25°C ≅ 298 K
∴ P = 1 atm
assuming ideal gas:
∴ V = RTn/P
⇒ V O2 = ((0.082 atm.L/K.mol)(298 K)(0.0664 mol))/( 1 atm)
⇒ V O2 = 1.623 L
The mass of a NaCl solution that is required to prepare 0.40 L of a 0.75 M solution is 17.55g. Details about mass can be found below.
<h3>How to calculate mass?</h3>
The mass of a substance can be calculated by multiplying the number of moles by its molar mass.
However, the number of moles of a solution must be initially calculated by using the following formula:
molarity = no of moles ÷ volume
no of moles = 0.75 × 0.40
no of moles = 0.3 moles
mass of NaCl = 0.3 × 58.5 = 17.55g
Therefore, the mass of a NaCl solution that is required to prepare 0.40 L of a 0.75 M solution is 17.55g.
Learn more about mass at: brainly.com/question/19694949
#SPJ1
Answer:
Percent error = 1.5%
Explanation:
Given data:
Measured value of density of graphite = 2.3 g/cm³
Percent error = ?
Solution:
Formula:
Percent error = [Measured value - Actual value / actual value] × 100
Actual/accepted value of density of graphite = 2.266 g/cm³
Now we will put the values:
Percent error = [2.3 g/cm³ - 2.266 g/cm³ / 2.266 g/cm³] × 100
Percent error = [0.034 g/cm³ / 2.266 g/cm³] × 100
Percent error = 0.015 × 100
Percent error = 1.5%
Mixing a base with an acid results in a chemical reaction called neutralization.<span> The result is a perfectly balanced solution of salt and water with a pH of 7 if the acid and base are balanced properly. Depending on the bases and acids used, it can be a dangerous experiment.</span>
Answer:2 ml.
Explanation:Volume. 2.5 g/ml = 5g/Volume. Volume = 5g/(2.5 g/ml). = 2 ml.