1.more
2.longer
3.warmer
4.northern
5.less
6.shorter
7.colder
8.southern
Answer:
84.8 mL
Explanation:
From the question given above, the following data were obtained:
Mass of CuNO₃ = 3.53 g
Molarity of CuNO₃ = 0.330 M
Volume of solution =?
Next, we shall determine the number of mole in 3.53 g of CuNO₃. This can be obtained as follow:
Mass of CuNO₃ = 3.53 g
Molar mass of CuNO₃ = 63.5 + 14 + (16×3)
= 63.5 + 14 + 48
= 125.5 g/mol
Mole of CuNO₃ =?
Mole = mass / Molar mass
Mole of CuNO₃ = 3.53 / 125.5
Mole of CuNO₃ = 0.028 moles
Next, we shall determine the volume of the solution. This can be obtained as follow:
Molarity of CuNO₃ = 0.330 M
Mole of CuNO₃ = 0.028 moles
Volume of solution =?
Molarity = mole /Volume
0.330 = 0.028 / Volume
Cross multiply
0.330 × Volume = 0.028
Divide both side by 0.330
Volume = 0.028 / 0.330
Volume = 0.0848 L
Finally, we shall convert 0.0848 L to millilitres (mL). This can be obtained as follow:
1 L = 1000 mL
Therefore,
0.0848 L = 0.0848 L × 1000 mL / 1 L
0.0848 L = 84.8 mL
Therefore, the volume of the solution is 84.8 mL.
Answer:
This is all true if the atom has to be neutral.
Also what does V mean?
Helium: one shell with 2 neutrons and 2 protons in the center, with 2 electrons in the first shell.
Lithium: two shells with 4 neutrons and 3 protons in the center, with 2 electrons in the first shell, and 1 electron in the second shell.
Nitrogen: two shells with 7 neutrons and 7 protons in the center, with 2 electrons in the first shell, and 5 electrons in the second shell.
Flourine: two shells with 9 protons and 10 neutrons in the center, with 2 electrons in the first shell, and 7 electrons in the second shell.
Neon: two shells with 10 neutrons and 10 protons in the center, with 2 electrons in the first shell, and 8 electrons in the second shell.
Boron: two shells with 6 neutrons and 5 protons in the center, with 2 electrons in the first shell, and 3 electrons in the second shell.
Answer:
sub-particle charge mass
protons +1 1
neutron 0 1
electron - 1 negligible
protons and neutrons are found in the nucleus
electrons in the shells orbiting the nucleus