<h2>Answer:</h2>
Moles of a gas = 0.500
Volume = 2.50 L
Pressure = 13. atm
Temperature = ?
Solution:
Formula:
PV = n RT
Putting the values in formula:
T = PV/nR = 13 * 2.5 / 0.5 * 0.082057
= 32.5/0.041 = 792.68 K
T = 792.68 K
Answer:
class sum (
public static void sumofvalue (int m, int n, int p)
{
System.out.println(m);
System.out.println(n);
System.out.println(p);
int SumValue=m+n+p;
System.out.println("Average="+Sumvalue/3);
}
)
Public class XYZ
(
public static void main(String [] args)
{
sum ob=new sum();
int X=3;
int X=4;
int X=5;
ob.sumofvalue(X,Y,Z);
int X=7;
int X=8;
int X=10;
ob.sumofvalue(X,Y,Z);
}
)
Explanation:
The above program is made in Java, in which first we have printed value in a separate line. After that, the average value of those three values has been printed according to the question.
The processing of the program is given below in detail
* The first one class named 'sum' has been created which contains the function to print individual value and the average of those three values.
* In seconds main class named 'XYZ', the object of that the above class had been created which call the method of the above class to perform functions.
* In the main class values are assigned to variables X, Y, Z.
Answer:
Dispersion Forces are found between n-Pentane (CH₃-CH₂-CH₂-CH₂-CH₃) and n-Hexane (CH₃-CH₂-CH₂-CH₂-CH₂-CH₃).
Explanation:
Dispersion Forces are present and developed by those compounds which are non-polar in nature. In given statement n-Pentane and n-Hexane both are non-polar in nature as the electronegativity difference between Hydrogen atoms and Carbon atoms is less than 0.4.
When non-polar molecules approaches each other, a Dipole is induced in one of them, this step is known as Instantaneous Dipole, This generated Dipole on approaching another non-polar molecule induces dipole in it and the process propagates. Hence, creating intermolecular interactions.
C because the sodium (cation) bonds with the sulphate (anion) and then chloride (anion) and hydrogen (acting as a cation) bond together
1 kg = 1000g
2.43 kg *1000g/1kg = 2430 g