We performed the following operations:
![f(x)=\sqrt[3]{x}\mapsto g(x)=2\sqrt[3]{x}=2f(x)](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%5Cmapsto%20g%28x%29%3D2%5Csqrt%5B3%5D%7Bx%7D%3D2f%28x%29)
If you multiply the parent function by a constant, you get a vertical stretch if the constant is greater than 1, a vertical compression if the constant is between 0 and 1. In this case the constant is 2, so we have a vertical stretch.
![g(x)=2\sqrt[3]{x}\mapsto h(x)=-2\sqrt[3]{x}=-g(x)](https://tex.z-dn.net/?f=g%28x%29%3D2%5Csqrt%5B3%5D%7Bx%7D%5Cmapsto%20h%28x%29%3D-2%5Csqrt%5B3%5D%7Bx%7D%3D-g%28x%29)
If you change the sign of a function, you reflect its graph across the x axis.
![h(x)=-2\sqrt[3]{x}\mapsto m(x)=-2\sqrt[3]{x}-1=h(x)-1](https://tex.z-dn.net/?f=h%28x%29%3D-2%5Csqrt%5B3%5D%7Bx%7D%5Cmapsto%20m%28x%29%3D-2%5Csqrt%5B3%5D%7Bx%7D-1%3Dh%28x%29-1)
If you add a constant to a function, you translate its graph vertically. If the constant is positive, you translate upwards, otherwise you translate downwards. In this case, the constant is -1, so you translate 1 unit down.
Distance = speed * time
d = 40(2)
d = 80 miles
substitute 3 in X's place
-2x + 5 = -2(3) + 5 = -6 + 5 = -1
hope it helps...!!!
There are no solutions, because the lines never touch. The answer(s) to a system of equations is/are the points where the two lines meet. Does this make sense?
By setting up a system of equations we can easily solve this problem. Let's denote Jane's working hours with x and Jack's working hours with y. Since they don't want to work more than 65 hours, the first equation is x+y=65. The second equation is 14x+7y=770. By solving this system of equation , we find that y=20 hours, which is Jack's maximum working hours.