Answer:
The average kinetic energy of A is greater than that of B.
Explanation:
The temperature of an object is directly proportional to the average kinetic energy of the particles in the object. For instance, for an ideal gas, we have
where
KE is the kinetic energy
k is the Boltzmann constant
T the absolute temperature of the gas
Therefore, this means that in a hotter object the average kinetic energy of the particles is higher than the average kinetic energy of the particles in a colder object.
Moreover, the laws of thermodynamics tell us that heat is always transferred from a hotter object (higher temperature) to a colder object (lower temperature).
In this problem heat is transferred from sample A to sample B. Therefore, this means that object A has higher temperature, and therefore, higher average kinetic energy. So the correct answer is
The average kinetic energy of A is greater than that of B.