Visual representation of covalent bonding indicating the valence shell electrons in the molecule, lines represents the shared pair of electron and pair of electrons that are not involved in bonding are represented as dots(lone pairs) are known as Lewis structures.
Compound formation takes place in order to complete the octet of each element that is according to octet rule, each atom forms bond with other atom in order to complete their octet that is to get eight electrons in its valence shell and attain stability.
An organic compound of the form
is known as ketene.
The given ketene is
.
The number of valence electron of:



The number of valence electrons in
= 
2 electrons are involved in each single bond between carbon and hydrogen and 4 electrons are involved in each double bond formed between carbon-carbon and carbon-oxygen. Hence, the total number of electrons involved in bond formation are 12 and rest 2 pair of electrons are present on oxygen as lone pair of electrons.
Therefore, the attached image is the Lewis structure of
.
Answer:
429.4 kJ are absorbed in the endothermic reaction.
Explanation:
The balanced chemical equation tells us that 1168 kJ of heat are absorbed in the reaction when 4 mol of NH₃ (g) react with 5 mol O₂ (g).
So what we need is to calculates how many moles represent 25 g NH₃(g) and calculate the heat absorbed. (NH₃ is the limiting reagent)
Molar Mass NH₃ = 17.03 g/mol
mol NH₃ = 25.00 g/ 17.03 g/mol = 1.47 mol
1168 kJ /4 mol NH₃ x 1.47 mol NH₃ = 429.4 kJ
The chemical reaction is expressed as:
2H2 + O2 = 2H2O
To determine the amount of oxygen used in the reaction, we use the amount of water produced and the relation of the substances in the reaction we do as follows:
209 g H2O ( 1 mol / 18.02 g ) ( 1 mol O2 / 2 mol H2O ) ( 32 g / 1 mol ) = 185.57 g O2
They will repel due to their same charges