Answer:
Kb = [CH₃NH₃⁺] × [OH⁻] / [CH₃NH₂]
Explanation:
According to Brönsted-Lowry acid-base theory:
- An acid is a substance that donates H⁺.
- A base is a substance that accepts H⁺.
When methylamine reacts with water, it behaves as a Brönsted-Lowry base, according to the following reaction.
CH₃NH₂(aq) + H₂O(l) ⇄ CH₃NH₃⁺(aq) + OH⁻(aq)
The basic equilibrium constant (Kb) is:
Kb = [CH₃NH₃⁺] × [OH⁻] / [CH₃NH₂]
The formula for the self ionization of water is 2H₂O(l)⇄H₃O⁺(aq)+OH⁻(aq)
The hydronium (H₃O⁺) is usually just referred to as a hydrogen ion or a proton (H⁺) and hydroxide (OH⁻) doesn't have another name that I am aware of. These ions do stay in solution. However the concentrations are really small and the equilibrium constant (K(w)) is 1×10⁻¹⁴.
I hope this helps. Let me know if anything is unclear.
Answer:
decreased by a factor of 10
Explanation:
pH is defined in such a way that;
pH= −log10(H)
Where H represents the concentration of Hydronium or Hydrogen ions
Given that pH is changed from 1 to 2,
By rearranging the above formula , we get 10−pH = H
- if pH=1,H=10−1=0.1M
- if pH=2,H=10−2=0.01M
Therefore, 0.1/0.01 = 10 and 0.1 > 0.01
Hence, the concentration of hydronium ions in the solution is decreased by a factor of 10
Answer:
Measuring a pencil in meters would be very difficult, as a single meter is much longer than one pencil. Also, measuring a hallway in millimeters would be very difficult considering how small millimeters are in comparison to a hallway. However, if you switch these two then they would work very well.
Answer: D. Mutation in coding sequences are more likely to be deleterious to the organism than mutations in noncoding sequences.
Explanation: It was not likely to be that the coding sequences are replicated more often. The only possible explanation is that the mutations in coding is more likely to be deleterious to the organism than mutations because it is in a non coding sequence.