Answer:
5.158 × 10²³ atoms K
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
33.49 g K
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of K - 39.10 g/mol
<u>Step 3: Convert</u>
<u />
= 5.15797 × 10²³ atoms K
<u>Step 4: Check</u>
<em>We are given 4 sig figs. Follow sig figs and round.</em>
5.15797 × 10²³ atoms K ≈ 5.158 × 10²³ atoms K
Here we have to write a simple equation which describes the action of the enzyme catalase.
The equation is: The concentration of the complex [ES] = ![\frac{[E]0}{1+\frac{Km}{[S]} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5BE%5D0%7D%7B1%2B%5Cfrac%7BKm%7D%7B%5BS%5D%7D%20%7D)
Let us consider an enzyme catalyses reaction E + S ⇄ ES → E + P
Where E, S, ES and P are enzyme, substrate, complex and product respectively.
The concentration of the complex [ES] =
, where
is the Michaelis constant.
[E]₀ and [S] is the initial concentration of enzyme and concentration of substrate respectively.
i think the greater the electric charge the atom decreases in size
What is the problem u need help with