</span>√3/<span>2 (sin 20 * sin 40 * sin 80) </span>√3/<span>2 (sin 20) [sin 40 * sin 80] </span> Using identity: <span>sin A sin B = (1/2) [ cos(A - B) - cos(A + B) ]
</span>√3/<span>2 (sin 20) (1 / 2) [cos 40 - cos 120] </span>√3/4<span> (sin 20) [cos 40 + cos 60] </span> Since cos 60 = 1/2:
√3/4<span> (sin 20) [cos 40 + (1/2)] </span>√3/4 (sin 20)(cos 40) + √3/8<span> (sin 20) </span> Using identity: <span> sin A cos B = 1/2 [ sin(A + B) + sin(A - B) ]
</span>√<span>3/4 (1 / 2) [sin 60 + sin (-20)] + </span>√3/8<span> (sin 20) </span> Since sin 60 = √3/<span>2
</span>√3/8 [√3/2 - sin 20] + √3/8 (sin 20) 3/16 - √3/8 sin 20 + √3/8<span> sin 20 </span> Cancelling out the 2 terms: 3/16