Answer:
ω=v/r.
Explanation:
<em><u>angular velocity= linear velocity/radius</u></em>
Rocks within Earth both expand and contract as P waves pass
Explanation:
Rocks within the earth both expands and contracts as P-waves passes through them. P-waves are elastic waves.
- Elastic waves behaves in such a way that they do not cause permanent deformation of rocks.
- They can be said to cause elastic deformation when they travel through rocks.
- They simply temporarily expand and contract the rock within a short period by causing the vibration of particles of the medium.
- After a short while, the rock returns back to its original position as if nothing has happened to it.
- These elastic waves are better called seismic waves.
- P-waves are primary waves that can travel through any medium.
Learn more:
Earthquakes brainly.com/question/11292835
#learnwithBrainly
The general formula to calculate the work is:

where F is the force, d is the displacement of the couch, and
is the angle between the direction of the force and the displacement. Let's apply this formula to the different parts of the problem.
(a) Work done by you: in this case, the force applied is parallel to the displacement of the couch, so
and
, therefore the work is just equal to the product between the horizontal force you apply to push the couch and the distance the couch has been moved:

(b) work done by the frictional force: the frictional force has opposite direction to the displacement, therefore
and
. Therefore, we must include a negative sign when we calculate the work done by the frictional force:

(c) The work done by gravity is zero. In fact, gravity (which points downwards) is perpendicular to the displacement of the couch (which is horizontal), therefore
and
: this means
.
(d) Work done by the net force:
The net force is the difference between the horizontal force applied by you and the frictional force:

And the net force is in the same direction of the displacement, so
and
and the work done is

Answer:
n_cladding = 1.4764
Explanation:
We are told that θ_max = 5 °
Thus;
θ_max + θ_c = 90°
θ_c = 90° - θ_max
θ_c = 90° - 5°
θ_c = 85°
Now, critical angle is given by;
θ_c = sin^(-1) (n_cladding/n_core)
sin θ_c = (n_cladding/n_core)
n_cladding = (n_core) × sin θ_c
Plugging in the relevant values, we have;
n_cladding = 1.482 × sin 85
n_cladding = 1.4764
Answer:
44100 N
Explanation:
Each wall will have dimension of 4 m x 1.5 m
Whole force will act on central point of wall situated at a depth of 1.5 /2 = .75m
pressure at CM = h d g , h = .75 , d ( density of water = 10³ )
pressure at CM = .75 x 10³ x 9.8
= 7350 N / m²
Total force on each wall
= pressure x area
= 7350 x 4 x 1.5
= 44100 N Ans
b ) If h = 1.5 x 2 = 3
Pressure = hdg
1.5 x 10³ x 9.8
= 14700 N / m²
Force
= pressure x area
14700 x 3 x 4
= 176400 N
Which is 4 times 44100 N
So force will quadruple.
It is so because both area and height have become twice.