Answer:
a) Acceleration is zero
, c) Speed is cero
Explanation:
a) the equation that governs the simple harmonic motion is
x = A cos (wt +φφ)
Where A is the amplitude of the movement, w is the angular velocity and φ the initial phase determined by the initial condition
Body acceleration is
a = d²x / dt²
Let's look for the derivatives
dx / dt = - A w sin (wt + φ)
a = d²x / dt² = - A w² cos (wt + φ)
In the instant when it is not stretched x = 0
As the spring is released at maximum elongation, φ = 0
0 = A cos wt
Cos wt = 0 wt = π / 2
Acceleration is valid for this angle
a = -A w² cos π/2 = 0
Acceleration is zero
b)
c) When the spring is compressed x = A
Speed is
v = dx / dt
v = - A w sin wt
We look for time
A = A cos wt
cos wt = 1 wt = 0, π
For this time the speedy vouchers
v = -A w sin 0 = 0
Speed is cero
Answer:
the number density of the protons in the beam is 3.2 × 10¹³ m⁻³
Explanation:
Given that;
diameter D = 2.0 mm
current I = 1.0 mA
K.E of each proton is 20 MeV
the number density of the protons in the beam = ?
Now, we make use of the relation between current and drift velocity
I = MeAv ⇒ 1 / eAv
The kinetic energy of protons is given by;
K = 
v²
v = √( 2K /
)
lets relate the cross-sectional area A of the beam to its diameter D;
A =
πD²
now, we substitute for v and A
n = I /
πeD² ×√( 2K /
)
n = 4I/π eD² × √(
/ 2K )
so we plug in our values;
n = ((4×1.0 mA)/(π(1.602×10⁻¹⁹C)(2mm)²) × √(1.673×10⁻²⁷kg / 2×( 20 MeV)(1.602×10⁻¹⁹ J/ev )
n = 1.98695 × 10¹⁸ × 1.6157967 × 10⁻⁵
n = 3.2 × 10¹³ m⁻³
Therefore, the number density of the protons in the beam is 3.2 × 10¹³ m⁻³
Answer:

south of east
Explanation:
= 3 m/s
=
north of east
= 6 m/s
=
south of east =
north of east
x and y component of 


x and y component of 



Magnitude

Direction

The magnitude of the change in velocity vector is
and the direction is
south of east.
Answer:
the distance between the person and the hill is 330 m.
Explanation:
Given;
speed of sound in air, v = 330m/s
time of sound travel, t = 2 s
The distance between the person and the hill is calculated as;

Therefore, the distance between the person and the hill is 330 m.
Tolerance enables the engineer to be informed when
somethings requires replacement or if there is a drawback with too much war.
The three types of tolerances that appear on dimensioned
drawings are limit, bilateral, and unilateral.
<span>General tolerances are normally found in the
information blocks of the blueprint while a specific tolerance is noted for
certain areas of the blueprint.</span>