Answer:
86.2 g/mol
Explanation:
Before you can find the molar mass, you first need to calculate the number of moles of the gas. To find this value, you need to use the Ideal Gas Law:
PV = nRT
In this equation,
-----> P = pressure (mmHg)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas constant (62.36 L*mmHg/mol*K)
-----> T = temperature (K)
After you convert the volume from mL to L and the temperature from Celsius to Kelvin, you can use the equation to find the moles.
P = 760 mmHg R = 62.36 L*mmHg/mol*K
V = 250 mL / 1,000 = 0.250 L T = 20 °C + 273.15 = 293.15 K
n = ? moles
PV = nRT
(760 mmHg)(0.250 L) = n(62.36 L*mmHg/mol*K)(293.15 K)
190 = n(18280.834)
0.0104 = n
The molar mass represents the mass (g) of the gas per every 1 mole. Since you have been given a mass and mole value, you can set up a proportion to determine the molar mass.
<----- Proportion
<----- Cross-multiply
<----- Divide both sides by 0.0104
Answer:
Nonmetal oxides react with water to form oxyacids. Ex. CO2 + H2O → H2CO3 Page 3 Decomposition - compound (reactant) breaks down into 2 or more simpler substances.
It has Covalent bond.........
Answer:
The conversion of liquid water into gaseous water is a chemical change
Explanation:
A chemical change occurs when there is a chemical reaction, so there'll be changed in the compounds, such as forming new ones, forming its elements, or elements forming compounds.
A physical change occurs when there is a change in the state of aggregation of the compound, it means that it changes its physical state. Solid for liquid, liquid for solid, liquid for gas, gas for liquid, solid for gas, and gas for solid are the physical changes.
So the evaporation of water, or its conversion in gaseous water, is a physical change, not a chemical change.
Answer:
The correct answer is A :))