Answer:
Every repeating or terminating decimal is a rational number
Each repeating decimal number satisfies a linear equation with integer coefficients, and its unique solution is a rational number.
I am not sure but I think the answer is B.
Answer: 
Step-by-step explanation:
<u>Given expression</u>
![\large\boxed{\frac{12[30 - (9+4^2)]}{|10|-|-6| } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%5Cfrac%7B12%5B30%20-%20%289%2B4%5E2%29%5D%7D%7B%7C10%7C-%7C-6%7C%20%7D%20%7D)
<u>Simplify the exponents</u>
![\large\boxed{=\frac{12[30 - (9+16)]}{|10|-|-6| } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D%5Cfrac%7B12%5B30%20-%20%289%2B16%29%5D%7D%7B%7C10%7C-%7C-6%7C%20%7D%20%7D)
Simplify values in the parenthesis
![\large\boxed{=\frac{12[30 - 25]}{|10|-|-6| } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D%5Cfrac%7B12%5B30%20-%2025%5D%7D%7B%7C10%7C-%7C-6%7C%20%7D%20%7D)
![\large\boxed{=\frac{12[5]}{|10|-|-6| } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D%5Cfrac%7B12%5B5%5D%7D%7B%7C10%7C-%7C-6%7C%20%7D%20%7D)
<u>Simplify absolute values (all positive)</u>
![\large\boxed{=\frac{12[5]}{10-6 } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D%5Cfrac%7B12%5B5%5D%7D%7B10-6%20%7D%20%7D)
![\large\boxed{=\frac{12[5]}{4 } }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D%5Cfrac%7B12%5B5%5D%7D%7B4%20%7D%20%7D)
<u>Simplify by division</u>
![\large\boxed{=3~[5]}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%3D3~%5B5%5D%7D)
<u>Simplify by multiplication</u>

Hope this helps!! :)
Please let me know if you have any questions
Just add 1 5/8 (wheel weights). your answer is J
To get you started: Look at the bottom 4 white squares. Each square represents an area of 5 sq. meters. Thus, these 4 white squares represent an area of 4(5 sq m) = 20 sq m.
Use the same method to calculate the remaining area. Hint: I count 7 full squares in this "remaining area."