Answer:
See explanation below
Explanation:
The question is incomplete, cause you are not providing the structure. However, I found the question and it's attached in picture 1.
Now, according to this reaction and the product given, we can see that we have sustitution reaction. In the absence of sodium methoxide, the reaction it's no longer in basic medium, so the sustitution reaction that it's promoted here it's not an Sn2 reaction as part a), but instead a Sn1 reaction, and in this we can have the presence of carbocation. What happen here then?, well, the bromine leaves the molecule leaving a secondary carbocation there, but the neighbour carbon (The one in the cycle) has a more stable carbocation, so one atom of hydrogen from that carbon migrates to the carbon with the carbocation to stabilize that carbon, and the result is a tertiary carbocation. When this happens, the methanol can easily go there and form the product.
For question 6a, as it was stated before, the mechanism in that reaction is a Sn2, however, we can have conditions for an E2 reaction and form an alkene. This can be done, cause the extoxide can substract the atoms of hydrogens from either the carbon of the cycle or the terminal methyl of the molecule and will form two different products of elimination. The product formed in greater quantities will be the one where the negative charge is more stable, in this case, in the primary carbon of the methyl it's more stable there, so product 1 will be formed more (See picture 2)
For question 6b, same principle of 6a, when the hydrogen migrates to the 2nd carbocation to form a tertiary carbocation the methanol will promove an E1 reaction with the vecinal carbons and form two eliminations products. See picture 2 for mechanism of reaction.
Answer:
True
Explanation:
It's true because the pH is a measure of how basic or acid a solution is. In an acidic medium, the pH scales goes from 0 to 7. While in a basic medium goes from 7 to 14. The lower the pH value of the most acid the solution is.
1. The expression pH = -log(molar concentration of hydronium) allow to calculate the pH of a solution.
2. On the other hand, the expression pOH = -log(molar concentration of hydroxide) allow to determine the pOH of a solution.
The values of pH and pOH always obey the following expression:
pH + pOH = 14
Thus if for instance the pH becomes smaller the pOH must become bigger in order to fulfill the equation. Which means that the concentration of hydronium ions is greater than the hydroxide concentration.
For example, in an acidic medium:
if pH= 3, pOH= 11
In this case the molar concentration of hydronium is 0,001M. And the molar concentration of hydroxide ions is just 0,00000000001M.
Answer:
1.
A= <u>sum</u><u>(</u><u>mass</u><u>*</u><u>percent</u><u> </u><u>abundance</u><u>)</u>
M 100
=(23.985*78.70)+(24.946*10.13)+(25.983*11.17)/100
= 24.3
2. The element is Magnesium.
3. 2412Mg,2512Mg and 2612Mg
This is false because males have 1 X and 1 Y chromosome. It's females who have 2 X chromosomes. So, it's false.
<em>I</em><em> </em><em>DONT</em><em> </em><em>KNOW</em><em> </em><em>THE</em><em> </em><em>ANSWER</em><em> </em><em>OF</em><em> </em><em>NO</em><em>.</em><em>B</em>
<em>SO</em><em> </em><em>SORRY</em><em> </em><em>FOR</em><em> </em><em>THAT</em><em>!</em><em>!</em><em>!</em>