Answer:
Explanation:
a) For diatomic gas: Translational motion = 3 and rotational motion = 2
∴ Total (internal energy) = 3 + 2 = 5
b) Translational + Rotational + Vibrational = 3 + 2 + 1 = 6
c) Linear molecule
i) Non linear molecule
ii) Monatomic molecule
The new pressure : P₂ = 1038.39 mmHg
<h3>Further explanation</h3>
Given
1.5 L container at STP
Heated to 100 °C
Required
The new pressure
Solution
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure).
So P₁ = 1 atm = 760 mmHg
T₁ = 273 K
T₂ = 100 °C+273 = 373 K
Gay Lussac's Law
When the volume is not changed, the gas pressure is proportional to its absolute temperature

Input the value :
P₂=(P₁.T₂)/T₁
P₂=(760 x 373)/273
P₂ = 1038.39 mmHg
The formula for pH given the pKa and the concentrations
are:
pH = pKa + log [a–]/[ha]
<span>
Therefore calculating:</span>
3.75 = 3.75 + log [a–]/[ha]
log [a–]/[ha] = 0
[a–]/[ha] = 10^0
<span>[a–]/[ha] = 1</span>
Answer:
c
Explanation:
1 calorie = 4.184J/g×°C
This also happens to be the specific heat capacity of water, which is the amount of energy it takes to raise the temperature of 1mL of water by 1°C