Answer:
C.0.28 V
Explanation:
Using the standard cell potential we can find the standard cell potential for a voltaic cell as follows:
The most positive potential is the potential that will be more easily reduced. The other reaction will be the oxidized one. That means for the reactions:
Cu²⁺ + 2e⁻ → Cu E° = 0.52V
Ag⁺ + 1e⁻ → Ag E° = 0.80V
As the Cu will be oxidized:
Cu → Cu²⁺ + 2e⁻
The cell potential is:
E°Cell = E°cathode(reduced) - E°cathode(oxidized)
E°cell = 0.80V - (0.52V)
E°cell = 1.32V
Right answer is:
<h3>C.0.28 V
</h3>
<h3 />
Answer:
B
Explanation:
I used my notes from class today.
For every, 3 Br- ions, 1 Al3+ ion reacts to form AlBr3.
Convert 16.2g of aluminum to moles:
16.2g Al / 27.0g per mol = 0.60 mols.
Based on the above ratio, 0.60 mols of Al will react with 1.8 mols of Br.
Convert 1.8 mols of Br to its mass:
1.8 mols Br × 79.9g per mol = 143.82g of Br.
B. What could be done to move the boxcar is the answer
Hello!
answer : c
eg = octahedral, mg = square planar, sp3d2
Hope that helps!