Answer:
The correct option is;
Raymond: I think the skateboarder has the same total energy at all points on the ramp
Explanation:
The total energy, also known as the total mechanical energy, is the sum of the kinetic and potential energies of the skateboarder
Given that the potential energy is the energy gained due to elevation, the maximum potential energy is obtained at the top of the ramp, while the maximum kinetic energy, which is the energy due to motion, is at the bottom of the ramp where the skateboarder moves fastest.
However, by the energy conservation principle, the kinetic energy of he skateboarder comes from the conversion of the potential energy, such that the total energy is the same at any particular point on the ramp.
The free-body diagram of an apple falling through the air has weight of the apple pointing downwards and the air-resistance on the apple acting upwards.
When an object falls from up to the ground, the object falls under in the influence of acceleration due to gravity.
The vertical component of the force on the apple as it falls trough the air is given as;
∑Fy = 0
Fₙ - W = 0
Fₙ = W
where;
- <em>Fₙ is the frictional force on the apple acting upwards</em>
- <em>W is the weight of the apple acting downwards</em>
The free-body diagram of the apple is represented as follows;
↑ Fₙ
Ο
↓ W
Thus, the free-body diagram of an apple falling through the air has weight of the apple pointing downwards and the air-resistance on the apple acting upwards.
Learn more here:brainly.com/question/18770265
The beginning development of a
star is marked by a supernova explosion, with the gases present in the nebula
being forced to scatter. As the star shrinks, radiation of the surface increases
and create pressure on the outside shell to push it away and forming a
planetary nebula or white dwarf.
Answer:
The frequency is 302.05 Hz.
Explanation:
Given that,
Speed = 18.0 m/s
Suppose a train is traveling at 30.0 m/s relative to the ground in still air. The frequency of the note emitted by the train whistle is 262 Hz .
We need to calculate the frequency
Using formula of frequency

Where, f = frequency
v = speed of sound
= speed of passenger
= speed of source
Put the value into the formula


Hence, The frequency is 302.05 Hz.
Answer:
b. 
Explanation:
As we know that the electric field due to infinite line charge is given as

here we can find potential difference between two points using the relation

now we have

now we have

now plug in all values in it


now we know by energy conservation

