The concept of this problem is the Law of Conservation of Momentum. Momentum is the product of mass and velocity. To obey the law, the momentum before and after collision should be equal:
m₁ v₁ + m₂v₂ = m₁v₁' + m₂v₂', where
m₁ and m₂ are the masses of the proton and the carbon nucleus, respectively,
v₁ and v₂ are the velocities of the proton and the carbon nucleus before collision, respectively,
v₁' and v₂' are the velocities of the proton and the carbon nucleus after collision, respectively,
m(164) + 12m(0) = mv₁' + 12mv₂'
164 = v₁' + 12v₂' --> equation 1
The second equation is the coefficient of restitution, e, which is equal to 1 for perfect collision. The equation is
(v₂' - v₁')/(v₁ - v₂) = 1
(v₂' - v₁')/(164 - 0) = 1
v₂' - v₁'=164 ---> equation 2
Solving equations 1 and 2 simultaneously, v₁' = -138.77 m/s and v₂' = +25.23 m/s. This means that after the collision, the proton bounced to the left at 138.77 m/s, while the stationary carbon nucleus move to the right at 25.23 m/s.
Answer:
Lifetime = 4.928 x 10^-32 s
Explanation:
(1 / v2 – 1 / c2) x2 = T2
T2 = (1/ 297900000 – 1 / 90000000000000000) 0.0000013225
T2 = (3.357 x 10^-9 x 1.11 x 10^-17) 1.3225 x 10^-6
T2 = (3.726 x 10^-26) 1.3225 x 10^-6 = 4.928 x 10^-32 s
If you only know its speed, that's not enough information to catch it. You could even chase it at DOUBLE that speed, and you'd never catch it if you were chasing in the wrong direction.
You also have to know the DIRECTION the runaway car is going, so that you can chase in the same direction.
Now that you know its speed AND direction, you know its velocity. You need that information to have any chance of catching it.
Answer:
frictonal force due to the surface of irregularities