Answer:
39 feet
Step-by-step explanation:
take the tree as AB , the distance between the man and the tree as BC, the distance between the man and the tip of the shadow CD and the point intersecting the hypotenuse CE
since CE parallel to AB we can BPT
CE/AB = CD/BD
6/32= CD/48
CD = 9 feet
since CD is feet
BC is 48-9 = 39 feet
Fraction- 24 357
-------
1000
X(.07 )+x = 14.70
x = 13.73831775
Piecewise Function is like multiple functions with a speific/given domain in one set, or three in one for easier understanding, perhaps.
To evaluate the function, we have to check which value to evalue and which domain is fit or perfect for the three functions.
Since we want to evaluate x = -8 and x = 4. That means x^2 cannot be used because the given domain is less than -8 and 4. For the cube root of x, the domain is given from -8 to 1. That meand we can substitute x = -8 in the cube root function because the cube root contains -8 in domain but can't substitute x = 4 in since it doesn't contain 4 in domain.
Last is the constant function where x ≥ 1. We can substitute x = 4 because it is contained in domain.
Therefore:
![\large{ \begin{cases} f( - 8 ) = \sqrt[3]{ - 8} \\ f(4) = 3 \end{cases}}](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%20%5Cbegin%7Bcases%7D%20f%28%20-%208%20%29%20%3D%20%20%20%5Csqrt%5B3%5D%7B%20-%208%7D%20%20%5C%5C%20f%284%29%20%3D%203%20%5Cend%7Bcases%7D%7D)
The nth root of a can contain negative number only if n is an odd number.
![\large{ \begin{cases} f( - 8 ) = \sqrt[3]{ - 2 \times - 2 \times - 2} \\ f(4) = 3 \end{cases}} \\ \large{ \begin{cases} f( - 8 ) = - 2\\ f(4) = 3 \end{cases}}](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%20%5Cbegin%7Bcases%7D%20f%28%20-%208%20%29%20%3D%20%20%20%5Csqrt%5B3%5D%7B%20-%202%20%5Ctimes%20-%20%202%20%5Ctimes%20%20%20-%202%7D%20%20%5C%5C%20f%284%29%20%3D%203%20%5Cend%7Bcases%7D%7D%20%5C%5C%20%20%5Clarge%7B%20%20%5Cbegin%7Bcases%7D%20f%28%20-%208%20%29%20%3D%20%20-%202%5C%5C%20f%284%29%20%3D%203%20%5Cend%7Bcases%7D%7D)
Answer
Answer: The number of letters that must be engraved for the costs to be the same is 125.
Step-by-step explanation:
Since we have given that

We need to find the number of letters.

Hence, the number of letters that must be engraved for the costs to be the same is 125.