Answer:
The discharge of the stream at this location is 40 cubic meters per second.
Explanation:
The discharge is the volume flow rate of the water in the stream. For this purpose we can use the following formula:
Discharge = Volume Flow Rate = (Cross-Sectional Area)(Velocity of Stream)
Volume Flow Rate = (Width of Stream)(Depth of Stream)(Velocity of Stream)
Volume Flow Rate = (4 meters)(2 meters)(5 meters per second)
<u>Volume Flow Rate = 40 cubic meters per second</u>
Therefore, the discharge of the stream at this location is found to be <u>40 cubic meters per second</u>
This result shows that 40 cubic meters volume of water passes or discharges through this point in a time of one second. Hence, this is called the volume flow rate or the discharge of the stream.
Answer:
B. 17.15 watts
Explanation:
Given that
Time = 10 seconds
height = distance = 0.7 meters
weight of sack = mg = F = 245 newtons
Power = work done/ time taken
Where work done = force × distance
Substituting the given parameters into the formula
Work done = 245 newton × 0.7 meters
Work done = 171.5 J
Recall,
Power = work done/time
Power = 171.5 J ÷ 10
Power = 17.15 watts
Hence the power expended is B. 17.15 watts
Good evening Carolina
You could say waves are the continuous transmission of energy from one location to the next.
I hope that's help:)
Answer:
42m/s
6.06s
Explanation:
To find the initial velocity and time in which the ball is fling over the ground you use the following formulas:

θ: angle = 45°
vo: initial velocity
g: gravitational constant = 9.8m/s^2
x_max: max distance = 180 m
t_max: max time
by replacing the values of the parameters and do vo the subject of the first formula you obtain:

with this value of vo you calculate the max time:

hence, the initial velocity of the ball is 42m/s and the time in which the ball is in the air is 6.06s
- - - - - - - - - - - - -- - - - - - - - - - - - - -
TRANSLATION:
Para encontrar la velocidad inicial y el tiempo en el que la pelota está volando sobre el suelo, use las siguientes fórmulas:
θ: ángulo = 45 °
vo: velocidad inicial
g: constante gravitacional = 9.8m / s ^ 2
x_max: distancia máxima = 180 m
t_max: tiempo máximo
reemplazando los valores de los parámetros y haciendo el tema de la primera fórmula que obtiene:
con este valor de vo usted calcula el tiempo máximo:
por lo tanto, la velocidad inicial de la pelota es de 42 m / sy el tiempo en que la pelota está en el aire es de 6.06 s