Answer:
<h3>Therefore the sum if the series is 15.98!</h3>
The common ratio is 1/2 or 0.5 . If you multiply the current term by the the common ratio the the output will be the next term.
8⋅1/2=4
4⋅1/2=2
2⋅1/2=1 etc ...
because the absolute value of r is less than 1 we can use the following formula.
a/1−r where a is the first term and r is the common ratio
In our problem
a=8 and r=0.5
Substitute
8/1−0.5=8/0.5=16
The sum of this infinite geometric series is 16.
Also, another formula you can use that is guaranteed to work every time, no matter what, is:
Sn=a(r^n−1/r−1)
All the variables work the same way as above, and "n" is the number of terms in the series. So, say you wanted to find the sum of the first 10 terms and were to substitute everything in:
S10=8(0.5^10−1/0.5−1)
S10=15.984375
Therefore the sum if the series is 15.98!
Step-by-step explanation:
<h2>Hope it is helpful....</h2>
A. a^1/12
When dividing two exponents with the same base, subtract the denominator exponent from the numerator's exponent.
the difference is the value of the new exponent with the same base.
Answer:
18
Step-by-step explanation:
if i get it wrong sorry :(
Answer:
Standard factor form of the integer : 15400 = 2³ × 5² × 7 × 11
Step-by-step explanation:
According to the unique factorization theorem, a given integer n (where, n>1), either is a prime number or can be represented as the product of the prime numbers.
Firstly, it is checked that the given integer is divisible by the smallest prime number 2 . If the integer is not divisible by 2, then the integer is checked for the next prime number 3 and then checked for 5 and so on until the remaining integers are prime numbers.
So, the standard factored form of the integer:
15400 = 2 × 770
15400 = 2 × 2 × 3850
15400 = 2 × 2 × 2 × 1925
15400 = 2 × 2 × 2 × 5 × 385
15400 = 2 × 2 × 2 × 5 × 5 × 77
15400 = 2 × 2 × 2 × 5 × 5 × 7 × 11
or,
15400 = 2³ × 5² × 7 × 11
Therefore, the standard factor form of the integer: 15400 = 2³ × 5² × 7 ×11
Answer:
120 maneras distintas
Step-by-step explanation:
En esta pregunta, tenemos 5 hombres y 4 mujeres. El número total de ubicaciones es 5 + 4 = 9 ubicaciones
Las posibles posiciones para colocar todo son las siguientes '
1 2 3 4 5 6 7 8 9
Ahora, las mujeres están tomando las posiciones pares que son 2 3 4 y 8
Las posiciones restantes que quedan sin ocupar serán posiciones;
Ahora, cada uno de los 5 hombres puede seleccionar solo una posición a la vez.
El primer hombre tiene 5 opciones, el segundo hombre tiene 4 opciones, el tercer hombre tiene 3 opciones, el cuarto hombre tiene dos opciones mientras que el último hombre tiene una sola opción. ¡Por lo tanto, la cantidad de formas en que será posible la disposición de la sesión es simplemente 5! maneras = 5 * 4 * 3 * 2 * 1 = 120 formas