Answer:
Antiparallel: A term applied to two molecules that are side by side but run in opposite directions. The two strands of DNA are antiparallel. The head of one strand is always laid against the tail of the other strand of DNA
Answer:
BLOOD PATHWAY:
Body > superior and inferior vena cava > right atrium > tricuspid valve > right ventricle > pulmonary semilunar valve > pulmonary artery > lungs > pulmonary vien > left ventricle > bicuspid/mitral valve> left ventricle > Aortic semilunar valve > Aorta > Body
The pathway goes like this:
From the body (we don't say first because this is a cycle), unoxygenated blood collected goes to the heart via the <u>INFERIOR and SUPERIOR VENA CAVA</u> then it empties into the <u>RIGHT ATRIUM</u> from there it passess through a valve called <u>TRICUSPID</u> valve, which prevents backflow of blood to the right atrium. The blood goes to our first pumping chamber, <u>RIGHT VENTRICLE. </u> The right ventricle pumps the blood through the <u>PULMONARY SEMILUNAR VALVE</u> which leads to the <u>PULMONARY ARTERIES</u>, which happens to be the only arteries that carry unoxygenated blood. From there it goes to the lungs to pick up oxygen and rid itself of carbon dioxide. The blood then goes back into the heart via the <u>PULMONARY VEINS</u> and like the latter, they are the only veins that carry oxygenated blood.
The blood then goes back into the heart, emptying into the <u>LEFT ATRIUM. </u> From there it goes through the <u>BICUSPID VALVE or MITRAL VALVE</u> and to the last and thickest pumping chamber, the <u>LEFT VENTRICLE.</u> The left ventricle pumps the blood through the <u>AORTIC SEMILUNAR VALVE</u> which opens out to the <u>AORTA. </u>
And at last, it goes back to your body.
Answer:
It will feed on organisms that are important to other species
Explanation:
Its an invasive species that is stealing food.
Plants are not the only organisms that are photosynthetic nor photosynthesis is the only mechanism for producers so the answer is false
C. ATP releases energy as a phosphate bond is broken.
Adenosine triphosphaste is name as such because it contains three phosphate bonds, the third one weaker than the other two. The third bond breaks off leaving two phospates behind. ATP, then, becomes adenosine diphosphate (ADP).