According to the secant-tangent theorem, we have the following expression:

Now, we solve for <em>x</em>.

Then, we use the quadratic formula:
![x_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=x_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D)
Where a = 1, b = 6, and c = -315.
![\begin{gathered} x_{1,2}=\frac{-6\pm\sqrt[]{6^2-4\cdot1\cdot(-315)}}{2\cdot1} \\ x_{1,2}=\frac{-6\pm\sqrt[]{36+1260}}{2}=\frac{-6\pm\sqrt[]{1296}}{2} \\ x_{1,2}=\frac{-6\pm36}{2} \\ x_1=\frac{-6+36}{2}=\frac{30}{2}=15 \\ x_2=\frac{-6-36}{2}=\frac{-42}{2}=-21 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x_%7B1%2C2%7D%3D%5Cfrac%7B-6%5Cpm%5Csqrt%5B%5D%7B6%5E2-4%5Ccdot1%5Ccdot%28-315%29%7D%7D%7B2%5Ccdot1%7D%20%5C%5C%20x_%7B1%2C2%7D%3D%5Cfrac%7B-6%5Cpm%5Csqrt%5B%5D%7B36%2B1260%7D%7D%7B2%7D%3D%5Cfrac%7B-6%5Cpm%5Csqrt%5B%5D%7B1296%7D%7D%7B2%7D%20%5C%5C%20x_%7B1%2C2%7D%3D%5Cfrac%7B-6%5Cpm36%7D%7B2%7D%20%5C%5C%20x_1%3D%5Cfrac%7B-6%2B36%7D%7B2%7D%3D%5Cfrac%7B30%7D%7B2%7D%3D15%20%5C%5C%20x_2%3D%5Cfrac%7B-6-36%7D%7B2%7D%3D%5Cfrac%7B-42%7D%7B2%7D%3D-21%20%5Cend%7Bgathered%7D)
<h2>Hence, the answer is 15 because lengths can't be negative.</h2>
Okay. So first you subtract 2x from each side. That will give you 4y= -2x+18 (you want to get y by itself). Then you divide both sides by 4. It should equal> y= 1/2x +9/2
Answer:
What
Step-by-step explanation:
Answer:
Your answer is -5
Step-by-step explanation:
On paper;
Answer:
218 students purchased tickets at the dance.
Step-by-step explanation:
Let,
x be the number of presale tickets
y be the number of tickets sold at the dance
According to given statement;
x+y=334 Eqn 1
18x+24y=7320 Eqn 2
Multiplying Eqn 1 by 18
18(x+y=334)
18x+18y=6012 Eqn 3
Subtracting Eqn 3 from Eqn 2
(18x+24y)-(18x+18y)=7320-6012
18x+24y-18x-18y=1308
6y=1308

Therefore,
218 students purchased tickets at the dance.