Answer:
When there is wind it takes longer
Explanation:
With no wind, the round trip time is

When we have a constant wind speed w

comparing the reciprocal times;

This means that t1 is smaller than t2, ergo, it takes longer with wind
Answer:
a
The x- and y-components of the total force exerted is

b
The magnitude of the force is

The direction of the force is
Clockwise from x-axis
Explanation:
From the question we are told that
The magnitude of the first charge is 
The magnitude of the second charge is 
The position of the second charge from the first one is 
The magnitude of the third charge is 
The position of the third charge from the first one is 


The position of the third charge from the second one is



The force acting on the third charge due to the first and second charge is mathematically represented as

Substituting values



The magnitude of
is mathematically evaluated as

The direction is obtained as

![\theta = tan ^{-1} [-0.63889]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%20%5E%7B-1%7D%20%5B-0.63889%5D)



Answer:
-92.33 (meaning the objects will not meet above the ground).
Explanation:
We can use the kinematic equation <em>displacement = initial velocity*time + 1/2*acceleration*time^2.</em>
We can plug in the known values of the 2 objects into the equation, where t is the time and x is the displacement:
x = 0*t + 1/2*(-9.8)*t^2+45
x = 8.5*t + 1/2*(-9.8)*t^2
We need to first solve for t to solve for x. Since both equations are equal to x, we can set them equal to each other and solve for t:
0*t + 1/2*(-9.8)*t^2+45 = 8.5*t + 1/2*(-9.8)*t^2
-4.9*t^2 +45 = 8.5*t + -4.9*t^2
45 = 8.5*t
t = 45/8.5 ≈5.294
Now, we can plug t as 5.294 into any of the equations above to solve for x:
x = 0*5.294 + 1/2*-9.8*(5.294)^2+45 ≈ -92.33
That means, the objects will not meet above the ground.
Note: Although the video is not provided in this question, it is not needed to answer the question.
Answer:
B) It does not deflect at all
Explanation:
Since both half shells contain opposite charges, the two shells become electrically neutral when they are brought together and the electroscope discharges. On separating the two half shells again, the needle does not deflect because the half shells have now lost their charges to become neutral.