Answer:
The fluids speed at a)
and b)
are
and
respectively
c) Th volume of water the pipe discharges is:
Explanation:
To solve a) and b) we should use flow continuity for ideal fluids:
(1)
With Q the flux of water, but Q is
using this on (1) we have:
(2)
With A the cross sectional areas and v the velocities of the fluid.
a) Here, we use that point 2 has a cross-sectional area equal to
, so now we can solve (2) for
:

b) Here we use point 2 as
:

c) Here we need to know that in this case the flow is the volume of water that passes a cross-sectional area per unit time, this is
, so we can write:
, solving for V:

The answer is (A) hope it helps
Answer:
The maximum emf that can be generated around the perimeter of a cell in this field is 
Explanation:
To solve this problem it is necessary to apply the concepts on maximum electromotive force.
For definition we know that

Where,
N= Number of turns of the coil
B = Magnetic field
Angular velocity
A = Cross-sectional Area
Angular velocity according kinematics equations is:



Replacing at the equation our values given we have that




Therefore the maximum emf that can be generated around the perimeter of a cell in this field is 
<em>Choice-C</em> is the right one.
-- The bolt didn't react to the magnet, and just laid there. That tells you that the bolt was made of a non-magnetic material.
-- The bolt didn't float. It went straight to the bottom. That tells you that it's more dense than the fluid around it.