1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xxMikexx [17]
3 years ago
14

Scientific work is currently underway to determine whether weak oscillating magnetic fields can affect human health. For example

, one study found that drivers of trains had a higher incidence of blood cancer than other railway workers, possibly due to long exposure to mechanical devices in the train engine cab. Consider a magnetic field of magnitude 0.00100 T, oscillating sinusoidally at 61.5 Hz. If the diameter of a red blood cell is 7.20 µm, determine the maximum emf that can be generated around the perimeter of a cell in this field.
Physics
1 answer:
nlexa [21]3 years ago
6 0

Answer:

The maximum emf that can be generated around the perimeter of a cell in this field is 1.5732*10^{-11}V

Explanation:

To solve this problem it is necessary to apply the concepts on maximum electromotive force.

For definition we know that

\epsilon_{max} = NBA\omega

Where,

N= Number of turns of the coil

B = Magnetic field

\omega = Angular velocity

A = Cross-sectional Area

Angular velocity according kinematics equations is:

\omega = 2\pi f

\omega = 2\pi*61.5

\omega =123\pi rad/s

Replacing at the equation our values given we have that

\epsilon_{max} = NBA\omega

\epsilon_{max} = NB(\pi (\frac{d}{2})^2)\omega

\epsilon_{max} = (1)(1*10^{-3})(\pi (\frac{7.2*10^{-6}}{2})^2)(123\pi)

\epsilon_{max} = 1.5732*10^{-11}V

Therefore the maximum emf that can be generated around the perimeter of a cell in this field is 1.5732*10^{-11}V

You might be interested in
Three forces are applied to a solid cylinder of mass 12 kg (see the drawing). The magnitudes of the forces are F1 = 15 N, F2 = 2
crimeas [40]

Answer:

α = 13.7 rad / s²

Explanation:

Let's use Newton's second law for rotational motion

         ∑ τ = I α

         

we will assume that the counterclockwise turns are positive

         F₁  0 + F₂ R₂ - F₃ R₃ = I α

give us the cylinder moment of inertia

        I = ½ M R₂²

         

        α = (F₂ R₂ - F₃ R₃)  \frac{2}{M R_2^2}

let's calculate

        α = (24  0.22 - 13  0.10) \frac{2}{12 \ 0.22^2}2/12 0.22²

        α = 13.7 rad / s²

6 0
3 years ago
1.20 Newton force is working on a 250 gram object. What is the acceleration?
Leokris [45]

Answer:

The answer is B

Explanation:

250g = 0.25kg

F = m × a

a = F/m

= 1.2/0.25

= 4.8m/s²

7 0
3 years ago
MARKING BRAINLIST | Which situation below would have the STRONGEST gravitational force between them?
maks197457 [2]

Case d) has the strongest gravitational force

Explanation:

The magnitude of the gravitational force between two objects is given by the equation:

F=G\frac{m_1 m_2}{r^2}

where :

G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2} is the gravitational constant

m1, m2 are the masses of the two objects

r is the separation between the objects

a) For this pair of objects:

m1 = 10 kg

m2 = 2 kg

r = 30 km = 30,000 m

So the gravitational force is

F=(6.67\cdot 10^{-11})\frac{(10)(2)}{30000^2}=1.48\cdot 10^{-18}N

b) For this pair of objects:

m1 = 10 kg

m2 = 10 kg

r = 30 km = 30,000 m

So the gravitational force is

F=(6.67\cdot 10^{-11})\frac{(10)(10)}{30000^2}=7.41\cdot 10^{-18}N

c) For this pair of objects:

m1 = 2 kg

m2 = 2 kg

r = 10 km = 10,000 m

So the gravitational force is

F=(6.67\cdot 10^{-11})\frac{(2)(2)}{10000^2}=1.33\cdot 10^{-17}N

d) For this pair of objects:

m1 = 10 kg

m2 = 10 kg

r = 10 km = 10,000 m

So the gravitational force is

F=(6.67\cdot 10^{-11})\frac{(10)(10)}{10000^2}=6.67\cdot 10^{-17}N

Therefore, the  strongest gravitational force is in case d).

Learn more about gravitational force:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

6 0
3 years ago
What is the total distance that the object traveled?
Natasha_Volkova [10]

Answer:

for what?

Explanation:

d=S x T

or

d=vt+1/2at2

srry if wrong but

hope this helps

take care

8 0
3 years ago
Consider heat transfer between two identical hot solid bodies and the air surrounding them. The first solid is being cooled by a
Nitella [24]

Answer:

The solution to the question above is explained below:

Explanation:

For which solid is the lumped system analysis more likely to be applicable?

<u>Answer</u>

The lumped system analysis is more likely to be applicable for the body cooled naturally.

<em>Question :Why?</em>

<u>Answer</u>

Biot number is proportional to the convection heat transfer coefficient, and it is proportional to the air velocity. When Biot no is less than 0.1 in  the case of natural convection, then lumped analysis can be applied.

<u>Further explanations:</u>

Heat is a form of energy.

Heat transfer describes the flow of heat across the boundary of a system due to temperature differences and the subsequent temperature distribution and changes. There are three different ways the heat can transfer: conduction, convection, or radiation.

Heat transfer  analysis which utilizes this idealization is known as the lumped system analysis.

The Biot number is a criterion dimensionless quantity used in heat transfer calculations which gives a direct indication of the relative importance of conduction and convection in determining the temperature history of a body being heated or cooled by convection at its surface. In heat transfer analysis, some bodies are observed to behave like a "lump" whose entire  body temperature remains essentially uniform at all times during a heat transfer process.

Conduction is the transfer of energy in the form of heat or electricity from one atom to another within an object and conduction of heat occurs when molecules increase in temperature.

Convection is a transfer of heat by the movement of a fluid. Convection occurs within liquids and gases between areas of different temperature.

7 0
3 years ago
Other questions:
  • The fluid in a grdulated cylinder should be read at the _____ of the meniscus.
    5·2 answers
  • 1. Explica porque es importante que en la casa y en el colegio nos enseñan a controlar nuestras emociones
    7·1 answer
  • Is this right at all
    12·1 answer
  • An object with a mass of 300 kg is
    11·2 answers
  • A smooth circular hoop with a radius of 0.800 m is placed flat on the floor. A 0.300-kg particle slides around the inside edge o
    12·1 answer
  • How does gravity affect the motions of Earth and the Moon?
    12·2 answers
  • 75kg man climbs a mountain 1000m high in 3hrs and uses 4100 joulse/min. (a) calculate the power consumption in watt, (b) what is
    11·1 answer
  • Application
    7·1 answer
  • Luster, hardness, color, size, and temperature are all examples of
    7·1 answer
  • Someone please help me!
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!