Mass of solute ( m1 ) = 50.0 g
mass of solvent ( m2 ) = 150.0 g
Therefore:
m/m = ( m1 / m1 + m2 )
m/m = ( 50.0 / 50.0 + 150.0 )
m/m = ( 50.0 / 200 )
m/m = 0.25
Answer:
9.82 g of Mg(NO₃)₂
Explanation:
Let's determine the reaction:
2AgNO₃ + MgBr₂ → Mg(NO₃)₂ + 2AgBr
2 moles of nitrate silver reacts with MgBr₂ in order to produce 1 mol of magnesium nitrate and silver bromide.
We determine the moles of AgNO₃
22.5 g . 1mol / 169.87g = 0.132 moles
Ratio is 2:1.
2 moles of silver nitrate can produce 1 mol of magnesium nitrate
Then, our 0.132 moles may produce (0.132 . 1)/ 2 = 0.0662 moles
We convert moles to mass:
0.0662 mol . 148.3 g/ mol = 9.82 g
Well none since molecules are a group of two or more atoms electrically bonded with one another. However, there are gases that does not naturally bond due to their stability and can be found in nature as pure elements. But these are not considered as molecules.
(By the way, these gases are the noble gases that can be found on the last column of the periodic table)
Answer:
The equilibrium temperature of the coffee is 72.4 °C
Explanation:
Step 1: Data given
Mass of cream = 15.0 grams
Temperature of the cream = 10.0°C
Mass of the coffee = 150.0 grams
Temperature of the coffee = 78.6 °C
C = respective specific heat of the substances( same as water) = 4.184 J/g°C
Step 2: Calculate the equilibrium temperature
m(cream)*C*(T2-T1) = -m(coffee)*c*(T2-T1)
15.0 g* 4.184 J/g°C *(T2 - 10.0°C) = -150.0g *4.184 J/g°C*(T2-78.6°C)
62.76T2 - 627.6 = -627.6T2 + 49329.36
690.36T2 = 49956.96
T2 = 72.4 °C
The equilibrium temperature of the coffee is 72.4 °C