The efficiency of any machine is given by:
efficiency = output obtained / input given
Substituting the values,
Efficiency = 105 / 150
Efficiency = 0.7
Converting this to a percentage, the efficiency of the hammer is 70%.
This is a fairly high efficiency, and this is due to the fact that the hammer is a simpler machine. The more complex a machine is, the greater are the losses in it due to friction, meaning there is a lower efficiency.
Answer:
2Ba₃(PO₄)₂ +6SiO₂ ⇒ P₄O₁₀ +6BaSiO₃
Explanation:
Equating coefficients, you get ...
aBa₃(PO₄)₂ +bSiO₂ ⇒ cP₄O₁₀ +dBaSiO₃
For Ba: 3a = d
For P: 2a = 4c
For O: 8a +2b = 10c +3d
For Si: b = d
__
Expressing everything in terms of b and c, we get ...
d = b
a = b/3 = 2c
From the second, b = 6c, so we have ...
a = 2c
b = 6c
c = c
d = 6c
And we can write the equation with c=1 as ...
2Ba₃(PO₄)₂ +6SiO₂ ⇒ P₄O₁₀ +6BaSiO₃
You can use a graduated cylinder.
<u>Answer:</u> The longest wavelength of light is 656.5 nm
<u>Explanation:</u>
For the longest wavelength, the transition should be from n to n+1, where: n = lower energy level
To calculate the wavelength of light, we use Rydberg's Equation:

Where,
= Wavelength of radiation
= Rydberg's Constant = 
= Higher energy level = 
= Lower energy level = 2 (Balmer series)
Putting the values in above equation, we get:

Converting this into nanometers, we use the conversion factor:

So, 
Hence, the longest wavelength of light is 656.5 nm
Answer:
Molarity = 0.5 M
Osmolarity = 0.5 x 2 = 1 Osmpl.
Molecules of Cl2 = 6.02 x
/ 4= 1.505 x
no. of molecules
Explanation:
If we add half mole in 1L volume than molarity will obviously be 0.5 M.
The osmolarity is molarity multiplies by number of dissociates of solute that for CaCl2 are 2. So, 2 x 0.5 = 1
Half will be molecules of Ca and half will be of Cl2 for 0.5M.