I'm assuming that by "miles" you mean moles.
If O2 is the excess reactant, that means Fe is the limiting reactant. That means that the amount of product being formed depends on the amount of Fe reactant present. To calculate the moles of Fe2O3 formed, start with the given 6.4 moles of Fe and use the mole to mole ratio given by the reaction as shown below:
6.4 mol Fe x

=
3.2 mol Fe2O3
<span>sunspots, hope this helps!!!!</span>
Answer:
In solid state all the atoms and molecules are held very closely together by strong attractive forces.
Explanation:
Solids have definite volume and shape.
In solids molecules are tightly pack and very close to each other.
Their melting and boiling point are every high.
The densities of solids are also very high as compared to the liquid and gas.
There are very strong inter molecular forces are present between solid molecules.
Consider the example of water. Which is present in three state solid, liquid and gas. In the form of ice its volume is less as compared to the liquid and gas, because molecules are tightly packed. If we melt the same ice we observe the volume is increase because molecules are now apart from each other. The distance between the molecules of water increased. If the same amount of water is evaporated the molecule of water will occupy all available space , and the distance between the water molecules get increased and inter molecular forces becomes negligible.
Answer:
ok so first of all try working hard then ill answer u
Explanation:
Question is incomplete. Complete question is attached below
.............................................................................................................................
Answer: Option A: HCO3-(aq.)
Reason:
From the reaction, it can be seen that following reaction occurs in forward direct
HCO3-(aq) + H2O(l) → H2CO3(aq) + OH-(aq)
In above forward reaction, HCO3- accepts proton from H2O to generate H2CO3. Thus, according to Lowry and Bronsted theory of acid-base,
HCO3- is a base, while
H2CO3 is a conjugate acid.