Answer: my answer I’d D! I’m sorry if this did not help you
Explanation: =)
Elias could be standing on the transform boundary.
Answer: Option 1.
<u>Explanation:</u>
Transform boundaries are places where plates slide sideways past one another. At change limits lithosphere is neither made nor devastated. Many change limits are found on the ocean bottom, where they associate fragments of veering mid-sea edges. California's San Andreas issue is a transform boundary.
Transform boundaries are regions where the Earth's plates move past one another, scouring along the edges. Every one of these three sorts of plate limit has its own specific kind of flaw (or break) along which movement happens. Transforms are strike-slip issues. There is no vertical movement—just horizontal.
Answer:
Chadwick-he discovered the neutron. He discovered this by demonstrating a neutral particle with a mass the same as a proton through a reaction between gramma Ray's and a wax sample.
Rutherford-he discovered the concept of radioactive half-life, the radioactive element radon, and named alpha and beta radiation.
j.j.Thompson discovered that atoms where made up of smaller components. This had major effects for the field of physics.
:)
Answer- 400 grams of AlCl3 is the maximum amount of AlCl3 produced during the experiment.
Given - Number of moles of Al(NO3)3 - 4 moles
Number of moles of NaCl - 9 moles
Find - Maximum amount of AlCl3 produced during the reaction.
Solution - The complete reaction is - Al(NO3)3 + 3NaCl --> 3NaNO3 + AlCl3
To find the maximum amount of AlCl3 produced during the reaction, we need to find the limiting reagent.
Mole ratio Al(NO3)3 - 4/1 - 4
Mole ratio NaCl - 9/3 - 3
Thus, NaCl is the limiting reagent in the reaction.
Now, 3 moles of NaCl produces 1 mole of AlCl3
9 moles of NaCl will produce - 1/3*9 - 3 moles.
Weight of AlCl3 - 3*133.34 - 400 grams
Thus, 400 grams of AlCl3 is the maximum amount of AlCl3 produced during the experiment.
Answer:B
Explanation:According to the law of superposition, sedimentary and volcanic rock layers are deposited on top of each other. They harden over time to become a solidified (competent) rock column, that may be intruded by igneous rocks and disrupted by tectonic events.