Answer:
Explanation:
412 ATP's will be generated from the complete metabolic oxidation of tripalmitin (tripalmitoylglycerol)
130 ATP from the oxidation of palmitate
22 ATP from the oxidation of glycerol
Altogether 130 + 22 = 412 ATP will be produced.
Here in case of tripalmitin (tripalmitoylglycerol), we have 51 carbons.
When 51 carbons can produce 412 ATPs
Then 1 carbon will produce how many ATPs = 412 ATPs/ 51 carbon= 8.1 ATPs.
This shows that ATP yield per carbon often oxidized will be 8.1 ATPs
Now we will see the ATP yield in the case of glucose.
Glucose is made up of 6 carbon and complete oxidation of glucose will produce 38 ATPs
When 6 carbons can yield 38 ATPs
Then 1 carbon can yield how many ATPs= 38 ATPs/ 6 carbons= 6.33 ATPs.
So, ATP yield per carbon in case of glucose will be 6.33 ATPs
I think it’s The second option sorry if I’m wrong
The answer for the given question above is IONIC. <span>Ionic substances form giant ionic </span>lattices<span> containing oppositely charged ions. They have high melting and boiling points, and </span>conduct<span> electricity when melted or dissolved in water.</span>
Answer:
hen the number of neutrons is known and the atomic number of an element is known, it becomes easier to determine the approximate mass number by adding the two.
Explanation:
Hope it shelps
Answer:
1. Ions are either negatively or positively charged species in which the number of electrons and protons are not equal.
2. The chemical bond that arises due to the sharing of electrons is termed a covalent bond.
3. The positively charged ions are called cations, which comprise more protons than electrons.
4. An example of a polyatomic anion is the hydroxide anion.
5. The system of assigning an unambiguous name to a compound is called nomenclature.