Depending if you were going up, you would be seeing an increase in relative ionization energies in a particular group on the periodic table, and vice versa, if you go down the group, an decrease in the relative ionization energies.
Answer:
they are molecules with normal bonds rather than partial bonds and can occasionally be isolated.
Explanation:
In chemistry, reaction intermediates are species that are formed from reactants and are subsequently being transformed into products as the reaction progresses. In other words, reaction intermediates are species that do not appear in a balanced reaction equation but occur somewhere along the reaction mechanism of a non-elementary reaction. They are usually short lived species that possess a high amount of energy. They may or may not be isolated.
They are often molecular species with normal bonds unlike activated complexes that are sometimes hypervalent species.
The answer is C............
Answer:
The equilibrium constant for the reversible reaction = 0.0164
Explanation:
At equilibrium the rate of forward reaction is equal to the rate of backwards reaction.
The reaction is given as
A ⇌ B
Rate of forward reaction is first order in [A] and the rate of backward reaction is also first order in [B]
The rate of forward reaction = |r₁| = k₁ [A]
The rate of backward reaction = |r₂| = k₂ [B]
(Taking only the magnitudes)
where k₁ and k₂ are the forward and backward rate constants respectively.
k₁ = 0.010 s⁻¹
k₂ = 0.0610 s⁻¹
|r₁| = 0.010 [A]
|r₂| = 0.016 [B]
At equilibrium, the rate of forward and backward reactions are equal
|r₁| = |r₂|
k₁ [A] = k₂ [B] (eqn 1)
Note that equilibrium constant, K, is given as
K = [B]/[A]
So, from eqn 1
k₁ [A] = k₂ [B]
[B]/[A] = (k₁/k₂) = (0.01/0.0610) = 0.0163934426 = 0.0164
K = [B]/[A] = (k₁/k₂) = 0.0164
Hope this Helps!!!