Forests and prairies are examples of ecosystems on land. An ecosystem is a community of living things. Members survive by interacting with each other and with their environment. At first glance, the ocean seems like one big ecosystem.
<u>Given:</u>
Calculated density values-
Aluminum = 2.7 g/cm3
Copper = 9.0 g/cm3
Iron = 7.9 g/cm3
Titanium = 4.8 g/cm3
Unknown sample mass = 9.5 g
Sample volume = 2.1 cm3
<u>To determine:</u>
The identity of the unknown sample
<u>Explanation:</u>
'Density' is a physical parameter which can be used to identify the nature of the unknown substance.
Density = Mass/Volume
For the unknown sample
Density = 9.5 g/2.1 cm3 = 4.52 g/cm3
This matches closely with the calculated density of titanium
Ans: The unknown substance is made of titanium
Answer:
8.8g of Al are necessaries
Explanation:
Based on the reaction, 2 moles of Al are required to produce 3 moles of hydrogen gas.
To solve this question we must find the moles of H2 in 11L at STP using PV = nRT. With these moles we can find the moles of Al required and its mass as follows:
<em>Moles H2:</em>
PV = nRT; PV/RT = n
<em>Where P is pressure = 1atm at STP; V is volume = 11L; R is gas constant = 0.082atmL/molK and T is absolute temperature = 273.15K at STP</em>
Replacing:
1atm*11L/0.082atmL/molK*273.15K = n
n = 0.491 moles of H2 must be produced
<em />
<em>Moles Al:</em>
0.491 moles of H2 * (2mol Al / 3mol H2) = 0.327moles of Al are required
<em />
<em>Mass Al -Molar mass: 26.98g/mol-:</em>
0.327moles of Al * (26.98g / mol) = 8.8g of Al are necessaries
Answer:
C.) 2
Explanation:
The pH equation is:
pH = -log[H⁺]
In this equation, [H⁺] is the molarity of the acid. In this case, the acid is HCl. Molarity can be found using the equation:
Molarity (M) = moles / volume (L)
Since you were given moles and volume, you can find the molarity of HCl.
Molarity = moles / volume
Molarity = 0.01 moles / 1.00 L
Molarity = 0.01 M
Now, you can plug the molarity of the acid into the pH equation.
pH = -log[H⁺]
pH = -log[0.01]
pH = 2
Answer:
Part A: 36 MBq; Part B: 18 MBq
Explanation:
The half-life is the time it takes for half the substance to disappear.
The activity decreases by half every half-life
A =Ao(½)^n, where n is the number of half-lives.
Part A
3.0 da = 1 half-life
A = Ao(½) = ½ × 72 MBq = 36 MBq
Part B
6.0 da = 2 half-lives
A = Ao(½)^2 = ¼ × 72 MBq = 18 MBq